DNA extraction was carried out on 32 medicinal plant samples available in Malaysia using the TriOmic(TM) extraction kit. Amounts of 0.1 g flowers or young leaves were ground with liquid nitrogen, lysed at 65°C in RY1(plus) buffer and followed by RNAse treatment. Then, RY2 buffer was added to the samples and mixed completely by vortexing before removal of cell debris by centrifugation. Supernatants were transferred to fresh microcentrifuge tubes and 0.1 volume RY3 buffer was added to each of the transferred supernatant. The mixtures were applied to spin columns followed by a centrifugation step to remove buffers and other residues. Washing step was carried out twice by applying 70% ethanol to the spin columns. Genomic DNA of the samples was recovered by applying 50 μL TE buffer to the membrane of each spin column, followed by a centrifugation step at room temperature. A modification of the TriOmic(TM) extraction procedure was carried out by adding chloroform:isoamyl alcohol (24:1) steps in the extraction procedure. The genomic DNA extracted from most of the 32 samples showed an increase of total yield when chloroform:isoamyl alcohol (24:1) steps were applied in the TriOmicTM extraction procedure. This preliminary study is very important for molecular studies of medicinal plants available in Malaysia since the DNA extraction can be completed in a shorter period of time (within 1 h) compared to manual extraction, which entails applying phenol, chloroform and ethanol precipitation, and requires 1-2 days to complete.
Mackerel (Scombridae; Rastrelliger) are small commercially important pelagic fish found in tropical regions. They serve as a cheap source of animal protein and are commonly used as live bait. By using a truss morphometrics protocol and RAPD analysis, we examined morphological and genetic variation among 77 individual mackerel that were caught using long lines and gillnets at 11 locations along the west coast of Peninsular Malaysia. Nineteen morphometric traits were evaluated and genetic information was estimated using five 10-base RAPD random primers. Total DNA was extracted from muscle tissue. Morphometric discriminant function analysis revealed that two morphologically distinct groups of Rastrelliger kanagurta and a single group of R. brachysoma can be found along the west coast of Peninsular Malaysia. We also found that the head-related characters and those from the anterior part of the body of Rastrelliger spp significantly contribute to stock assessment of this population. RAPD analysis showed a trend similar to that of the morphometric analysis, suggesting a genetic component to the observed phenotypic differentiation. These data will be useful for developing conservation strategies for these species.
Matched MeSH terms: DNA/genetics; Random Amplified Polymorphic DNA Technique
Amphiboloidea is a small but widespread group of snails found exclusively, and often abundantly, in mudflat and associated salt marsh or mangrove habitat. This study uses molecular data from three loci (COI, 16S and 28S) to infer phylogenetic relationships in Amphiboloidea and examine its position in Euthyneura. All but two of the named extant species of Amphiboloidea and additional undescribed taxa from across Southeast Asia and the Arabian Gulf were sampled. In contrast to the current morphology-based classification dividing Amphiboloidea into three families, analysis of molecular data supports revision of the classification to comprise two families. Maningrididae is a monotypic family basal to Amphibolidae, which is revised to comprise three subfamilies: Amphibolinae, Phallomedusinae and Salinatorinae. Sequence divergence between Asian populations of Naranjia is relatively large and possibly indicative of species complexes divergent across the Strait of Malacca. Salinatorrosacea and Salinator burmana do not cluster with other Salinator species, and require generic reassignment. In addition, sequences were obtained from an undescribed species of Lactiforis from the Malay Peninsula. Reconstruction of ancestral distributions indicates a plesiomorphic distribution and centre of origin in Australasia, with two genera subsequently diversifying throughout Asia. Increasing the sampling density of amphiboloid taxa in a phylogenetic analysis of Euthyneura did not resolve the identity of the sister taxon to Amphibolidae, but confirmed its inclusion in Pulmonata/Panpulmonata.
Matched MeSH terms: DNA, Mitochondrial/genetics; Sequence Analysis, DNA
Effect of Tai Chi exercise on the level of DNA damage using the comet assay, lymphocyte viability and frequency of sister chromatid exchange (SCE) were determined in adults aged above 45. Tai Chi participants of 7 years (n=35), showed higher level of normal DNA and lower level of mild and severely damaged DNA as compared to the sedentary subjects (n=35). The former are suggested to have effective DNA repair mechanism as their frequency of SCE was markedly lower. Higher lymphocyte apoptosis and proliferation found in the Tai Chi participants also indicated that the exercise promotes renewal and regeneration of lymphocytes.
Taxonomic relationships within the Old World fruit bat genus, Cynopterus, have been equivocal for the better part of a century. While nomenclature has been revised multiple times on the basis of phenotypic characters, evolutionary relationships among taxa representing the entire geographic range of the genus have not been determined. We used mitochondrial DNA sequence data to infer phylogenetic relationships among the three most broadly distributed members of the genus: C. brachyotis, C. horsfieldi, and C. sphinx, and to assess whether C. brachyotis represents a single widespread species, or a complex of distinct lineages. Results clearly indicate that C. brachyotis is a complex of lineages. C. sphinx and C. horsfieldi haplotypes formed monophyletic groups nested within the C. brachyotis species complex. We identified six divergent mitochondrial lineages that are currently referred to C. brachyotis. Lineages from India, Myanmar, Sulawesi, and the Philippines are geographically well-defined, while in Malaysia two lineages, designated Sunda and Forest, are broadly sympatric and may be ecologically distinct. Demographic analyses of the Sunda and Forest lineages suggest strikingly different population histories, including a recent and rapid range expansion in the Sunda lineage, possibly associated with changes in sea levels during the Pleistocene. The resolution of the taxonomic issues raised in this study awaits combined analysis of morphometric characters and molecular data. However, since both the Indian and Malaysian Forest C. brachyotis lineages are apparently ecologically restricted to increasingly fragmented forest habitat, we suggest that reevaluation of the conservation status of populations in these regions should be an immediate goal.
Matched MeSH terms: DNA, Mitochondrial/genetics*; Sequence Analysis, DNA
We examined differences in pollen dispersal efficiency between 2 years in terms of both spatial dispersal range and genetic relatedness of pollen in a tropical emergent tree, Dipterocarpus tempehes. The species was pollinated by the giant honeybee (Apis dorsata) in a year of intensive community-level mass-flowering or general flowering (1996), but by several species of moths in a year of less-intensive general flowering (1998). We carried out paternity analysis based on six DNA microsatellite markers on a total of 277 mature trees forming four spatially distinct subpopulations in a 70 ha area, and 147 and 188 2-year-old seedlings originating from seeds produced in 1996 and 1998 (cohorts 96 and 98, respectively). Outcrossing rates (0.93 and 0.96 for cohorts 96 and 98, respectively) did not differ between years. Mean dispersal distances (222 and 192 m) were not significantly different between the 2 years but marginally more biased to long distance in 1996. The mean relatedness among cross-pollinated seedlings sharing the same mothers in cohort 96 was lower than that in cohort 98. This can be attributed to the two facts that the proportion of intersubpopulations pollen flow among cross-pollination events was marginally higher in cohort 96 (44%) than in cohort 98 (33%), and that mature trees within the same subpopulations are genetically more related to each other than those between different subpopulations. We conclude that D. tempehes maintained effective pollen dispersal in terms of outcrossing rate and pollen dispersal distance in spite of the large difference in foraging characteristics between two types of pollinators. In terms of pollen relatedness, however, a slight difference was suggested between years in the level of biparental inbreeding.
Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor.
In order to clarify the phylogenetic relationships among the main marine myxosporean clades including newly established Ceratonova clade and scrutinizing their evolutionary origins, we performed large-scale phylogenetic analysis of all myxosporean species from the marine myxosporean lineage based on three gene analyses and statistical topology tests. Furthermore, we obtained new molecular data for Ceratonova shasta, C. gasterostea, eight Ceratomyxa species and one Myxodavisia species. We described five new species: Ceratomyxa ayami n. sp., C. leatherjacketi n. sp., C. synaphobranchi n. sp., C. verudaensis n. sp. and Myxodavisia bulani n. sp.; two of these formed a new, basal Ceratomyxa subclade. We identified that the Ceratomyxa clade is basal to all other marine myxosporean lineages, and Kudoa with Enteromyxum are the most recently branching clades. Topologies were least stable at the nodes connecting the marine urinary clade, the marine gall bladder clade and the Ceratonova clade. Bayesian inference analysis of SSU rDNA and the statistical tree topology tests suggested that Ceratonova is closely related to the Enteromyxum and Kudoa clades, which represent a large group of histozoic species. A close relationship between Ceratomyxa and Ceratonova was not supported, despite their similar myxospore morphologies. Overall, the site of sporulation in the vertebrate host is a more accurate predictor of phylogenetic relationships than the morphology of the myxospore.
Matched MeSH terms: DNA, Ribosomal/genetics; Sequence Analysis, DNA
Understanding dietary diversity is a fundamental task in the study of stump-tailed macaque, Macaca arctoides in its natural habitat. However, direct feeding observation and morphological identification using fecal samples are not effective and nearly impossible to obtain in natural habitats because this species is sensitive to human presence. As ecological methods are challenging and time-consuming, DNA metabarcoding offers a more powerful assessment of the diet. We used a chloroplast tRNL DNA metabarcoding approach to identify the diversity of plants consumed by free-ranging M. arctoides in the Malaysia-Thailand border region located in Perlis State Park, Peninsular Malaysia. DNA was extracted from three fecal samples, and chloroplast tRNL DNA was amplified and sequenced using the Illumina MiniSeq platform. Sequences were analyzed using the CLC Genomic Workbench software. A total of 145 plant species from 46 families were successfully identified as being consumed by M. arctoides. The most abundant species were yellow saraca, Saraca thaipingensis (11.70%), common fig, Ficus carica (9.33%), aramata, Clathrotropis brachypetala (5.90%), sea fig, Ficus superba (5.44%), and envireira, Malmea dielsiana (1.70%). However, Clathrotropis and Malmea are not considered Malaysian trees because of limited data available from Malaysian plant DNA. Our study is the first to identify plant taxa up to the species level consumed by stump-tailed macaques based on a DNA metabarcoding approach. This result provides an important understanding on diet of wild M. arctoides that only reside in Perlis State Park, Malaysia.
Matched MeSH terms: DNA, Chloroplast; DNA, Plant; DNA Barcoding, Taxonomic
We describe the variation in copy number of a ~ 10 kb region overlapping the long intergenic noncoding RNA (lincRNA) gene, TTTY22, within the IR3 inverted repeat on the short arm of the human Y chromosome, leading to individuals with 0-3 copies of this region in the general population. Variation of this CNV is common, with 266 individuals having 0 copies, 943 (including the reference sequence) having 1, 23 having 2 copies, and two having 3 copies, and was validated by breakpoint PCR, fibre-FISH, and 10× Genomics Chromium linked-read sequencing in subsets of 1234 individuals from the 1000 Genomes Project. Mapping the changes in copy number to the phylogeny of these Y chromosomes previously established by the Project identified at least 20 mutational events, and investigation of flanking paralogous sequence variants showed that the mutations involved flanking sequences in 18 of these, and could extend over > 30 kb of DNA. While either gene conversion or double crossover between misaligned sister chromatids could formally explain the 0-2 copy events, gene conversion is the more likely mechanism, and these events include the longest non-allelic gene conversion reported thus far. Chromosomes with three copies of this CNV have arisen just once in our data set via another mechanism: duplication of 420 kb that places the third copy 230 kb proximal to the existing proximal copy. Our results establish gene conversion as a previously under-appreciated mechanism of generating copy number changes in humans and reveal the exceptionally large size of the conversion events that can occur.
Matched MeSH terms: Sequence Analysis, DNA; DNA Copy Number Variations*
The inheritance of 31 amplicons from short and long primer RAPD was tested for segregating ratios in two families of the brown planthopper, Nilaparvata lugens, and they were found to be inherited in a simple Mendelian fashion. These markers could now be used in population genetics studies of N. lugens. Ten populations of N. lugens were collected from five locations in Malaysia. Each location had two sympatric populations. Cluster and principal coordinate analyses based on genetic distance along with AMOVA revealed that the rice-infesting populations (with high esterase activity) at five localities clustered together as a group, and Leersia-infesting populations (with low esterase activity) at the same localities formed another distinct cluster. Two amplicons from primers OPD03 (0.65 kb) and peh#6 (1.0 kb) could be considered diagnostic bands, which were fixed in the Leersia-infesting populations. These results represent evidence of a sibling species in the N. lugens complex.
Matched MeSH terms: DNA Fingerprinting; DNA Primers; Random Amplified Polymorphic DNA Technique
The type strain Planococcus donghaensis JH1Tis a psychrotolerant and halotolerant bacterium with starch-degrading ability. Here, we determine the carbon utilization profile of P. donghaensis JH1Tand report the first complete genome of the strain. This study revealed the strain's ability to utilize pectin and d-galacturonic acid, and identified genes responsible for degradation of the polysaccharides. The genomic information provided may serve as a fundamental resource for full exploration of the biotechnological potential of P. donghaensis JH1T.
Matched MeSH terms: DNA, Bacterial/genetics; Sequence Analysis, DNA
During the study into the microbial biodiversity and bioactivity of the Microcystis phycosphere, a new yellow-pigmented, non-motile, rod-shaped bacterium containing polyhydroxybutyrate granules designated as strain Z10-6T was isolated from highly-toxic Microcystis aeruginosa Kützing M.TN-2. The new isolate produces active bioflocculating exopolysaccharides. Phylogenetic analysis based on 16S rRNA gene sequences indicated strain Z10-6T belongs to the genus Sphingopyxis with highest similarity to Sphingopyxis solisilvae R366T (98.86%), and the similarity to other Sphingopyxis members was less than 98.65%. However, both low values obtained by phylogenomic calculation of average nucleotide identity (ANI, 85.5%) and digital DNA-DNA hybridization (dDDH, 29.8%) separated the new species from its closest relative. The main polar lipids were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified glycolipid and one unidentified aminophospholipid. The predominant fatty acids were summed feature 8, C17:1ω6c, summed feature 3, C16:0, C18:1ω7c 11-methyl and C14:0 2-OH. The respiratory quinone was ubiqunone-10, with spermidine as the major polyamine. The genomic DNA G + C content was 64.8 mol%. Several biosynthesis pathways encoding for potential new bacterial bioactive metabolites were found in the genome of strain Z10-6T. The polyphasic analyses clearly distinguished strain Z10-6T from its closest phylogenetic neighbors. Thus, it represents a novel species of the genus Sphingopyxis, for which the name Sphingopyxis microcysteis sp. nov. is proposed. The type strain is Z10-6T (= CCTCC AB2017276T = KCTC 62492T).
Matched MeSH terms: DNA, Bacterial/genetics; Sequence Analysis, DNA
Mitochondria have multiple functions, including synthesis of adenine triphosphate, production of reactive oxygen species, calcium signalling, thermogenesis and apoptosis. Mitochondria have a significant contribution in regulating the various physiological aspects of reproductive function, from spermatogenesis up to fertilisation. Mitochondrial functionality and intact mitochondrial membrane potential are a pre-requisite for sperm motility, hyperactivation, capacitation, acrosin activity, acrosome reaction and DNA integrity. Optimal mitochondrial activity is therefore crucial for human sperm function and semen quality. However, the precise role of mitochondria in spermatozoa remains to be fully explored. Defects in sperm mitochondrial function severely impair the maintenance of energy production required for sperm motility and may be an underlying cause of asthenozoospermia. Sperm mtDNA is susceptible to oxidative damage and mutations that could compromise sperm function leading to infertility. Males with abnormal semen parameters have increased mtDNA copy number and reduced mtDNA integrity. This review discusses the role of mitochondria in sperm function, along with the causes and impact of its dysfunction on male fertility. Greater understanding of sperm mitochondrial function and its correlation with sperm quality could provide further insights into their contribution in the assessment of the infertile male.
Recognition sites for nine different restriction endonucleases were mapped on rDNA genes of fasciolid species. Southern blots of digested DNA from individual worms were probed sequentially with three different probes derived from rDNA of Schistosoma mansoni and known to span between them the entire rDNA repeat unit in that species. Eighteen recognition sites were mapped for Fasciola hepatica, and seventeen for Fasciola gigantica and Fascioloides magna. Each fasciolid species had no more than two unique recognition sites, the remainder being common to one or both of the other two species. No intraspecific variation in restriction sites was noted in F. hepatica (individuals from 11 samples studied; hosts were sheep, cattle and laboratory animals; geographical origins. Australia, New Zealand, Mexico, U.K., Hungary and Spain), or in F. gigantica (two samples; Indonesia and Malaysia). Only one sample of F. magna was available. One specimen of Fasciola sp. from Japan (specific identity regarded in the literature as uncertain) yielded a restriction map identical to that of F. gigantica. Almost all recognition sites occurred in or near the putative rRNA coding regions. The non-transcribed spacer region had few or no cut sites despite the fact that this region is up to about one half of the entire repeat unit in length. Length heterogeneity was noted in the non-transcribed spacer, even within individual worms.
Matched MeSH terms: DNA Restriction Enzymes; DNA, Ribosomal/analysis*
Geographically isolated populations of endemic orchids have evolved and adapted to an existence within specifi c ecological niches. These populations are highly susceptible to anthropogenic
infl uences on their microhabitats. The primary objective of conservation programs is the restoration of endangered populations to their ecologically sustainable levels, and the fi rst stage in the process of conservation involves estimation of molecular diversity at the level of the population. The approach described in this article involves the application of RAPD, Microsatellites and Chloroplast DNA markers for the characterization of the genetic structure of Paphiopedilum rothschildianum and Phalaenopsis gigantea, two endangered and endemic orchids of Sabah. This study has isolated a total of 96 microsatellite loci in P. rothschildianum and P. gigantea, 42 specifi c primer pairs have been designed for amplifi cation of microsatellite loci and are currently being applied to screen the breeding pools. The Chloroplast DNA regions amplifi ed by the primer pairs trnH-psbA and trnL-trnF exhibit distinct polymorphisms and can be used to establish phylogenetic
relationships. The ability of microsatellite loci to cross-amplify selected varieties of orchids has been determined. The molecular markers developed will be applied to estimate population diversity
levels and to formulate long-term management strategies for the conservation of endangered species of orchids of Sabah.
Matched MeSH terms: DNA Primers; DNA, Chloroplast; Random Amplified Polymorphic DNA Technique
Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
Matched MeSH terms: DNA; DNA Modification Methylases; DNA Methylation
Nepenthaceae is one of the largest carnivorous plant families and features ecological and morphological adaptations indicating an impressive adaptive radiation. However, investigation of evolutionary and taxonomic questions is hindered by poor phylogenetic understanding, with previous molecular studies based on limited loci and taxa. We use high-throughput sequencing with a target-capture methodology based on a 353-loci, probe set to recover sequences for 197 samples, representing 151 described or putative Nepenthes species. Phylogenetic analyses were performed using supermatrix and maximum quartet species tree approaches. Our analyses confirm five Western outlier taxa, followed by N. danseri, as successively sister to the remainder of the group. We also find mostly consistent recovery of two major Southeast Asian clades. The first contains common or widespread lowland species plus a Wallacean-New Guinean clade. Within the second clade, sects. Insignes and Tentaculatae are well supported, while geographically defined clades representing Sumatra, Indochina, Peninsular Malaysia, Palawan, Mindanao and Borneo are also consistently recovered. However, we find considerable conflicting signal at the site and locus level, and often unstable backbone relationships. A handful of Bornean taxa are inconsistently placed and require further investigation. We make further suggestions for a modified infra-generic classification of genus Nepenthes.
The present study has synthesized poly(4,4'-cyclohexylidene bisphenol oxalate) by the condensation of oxalyl chloride with 4,4'-cyclohexylidene bisphenol, where its efficacy was tested for the solid-phase extraction of DNA. The synthesized polymer in the form of a white powder was characterized by FTIR, TGA-DTG, SEM, and BET analysis. The study utilized solid-phase application of the resulting polymer to extract DNA. The analysis of results provided the information that the extraction efficiency is a strong dependent of polymer amount and binding buffer type. Among the three types of buffers tested, the GuHCl buffer produced the most satisfactory results in terms of yield and efficiency of extraction. Moreover, the absorbance ratio of A260/A280 in all of the samples varied from 1.682 to 1.491, thereby confirming the capability of poly(4,4'-cyclohexylidene bisphenol oxalate) to elute pure DNA. The results demonstrated an increased DNA binding capacity with respect to increased percentage of the polymer. The study has concluded that poly(bisphenol Z oxalate) can be applied as one of the potential candidates for the high efficiency extraction of DNA by means of a simple, cost-effective, and environmentally friendly approach compared to the other traditional solid-phase methods.
The taxonomic positions of members within the family Pseudonocardiaceae were assessed based on phylogenomic trees reconstructed using core-proteome and genome blast distance phylogeny approaches. The closely clustered genome sequences from the type strains of validly published names within the family Pseudonocardiaceae were analysed using overall genome-related indices based on average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values. The family Pseudonocardiaceae consists of the type genus Pseudonocardia, as well as the genera Actinoalloteichus, Actinocrispum, Actinokineospora, Actinomycetospora, Actinophytocola, Actinopolyspora, Actinorectispora, Actinosynnema, Allokutzneria, Allosaccharopolyspora gen. nov., Amycolatopsis, Bounagaea, Crossiella, Gandjariella, Goodfellowiella, Haloactinomyces, Haloechinothrix, Halopolyspora, Halosaccharopolyspora gen. nov., Herbihabitans, Kibdelosporangium, Kutzneria, Labedaea, Lentzea, Longimycelium, Prauserella, Saccharomonospora, Saccharopolyspora, Saccharothrix, Salinifilum, Sciscionella, Streptoalloteichus, Tamaricihabitans, Thermocrispum, Thermotunica and Umezawaea. The G+C contents of the Pseudonocardiaceae genomes ranged from 66.2 to 74.6 mol% and genome sizes ranged from 3.69 to 12.28 Mbp. Based on the results of phylogenomic analysis, the names Allosaccharopolyspora coralli comb. nov., Halosaccharopolyspora lacisalsi comb. nov. and Actinoalloteichus caeruleus comb. nov. are proposed. This study revealed that Actinokineospora mzabensis is a heterotypic synonym of Actinokineospora spheciospongiae, Lentzea deserti is a heterotypic synonym of Lentzea atacamensis, Prauserella endophytica is a heterotypic synonym of Prauserella coralliicola, and Prauserella flava and Prauserella sediminis are heterotypic synonyms of Prauserella salsuginis. This study addresses the nomenclature conundrums of Actinoalloteichus cyanogriseus and Streptomyces caeruleus as well as Micropolyspora internatus and Saccharomonospora viridis.
Matched MeSH terms: DNA, Bacterial/genetics; Sequence Analysis, DNA