DESIGN: A case-controlled study of the iron levels (microgram/mL) in the pelvic PF of 12 patients with moderate-to-severe disease, 15 patients with minimal-to-mild disease and in 17 women with normal pelvises were compared. As an index of free radical reactions through lipid peroxidation, the levels of malondialdehyde levels (ng/mL) were assessed simultaneously in the same specimens.
RESULTS: Controlling for the phase of the menstrual cycle, significantly higher levels of iron were seen in patients with endometriosis, the levels being correlated with the severity of the disease. However no such corresponding relationship was seen in the malondialdehyde levels in the PF.
CONCLUSIONS: These results suggest that raised iron levels in the PF do not play a role in catalyzing free radical reactions as judged by the degree of lipid peroxidation.
DESIGN: Control study involving patients with and without endometriosis.
METHODS: The lipid peroxide (malondialdehyde) levels in the pelvic PF of 12 patients with moderate-to severe endometriosis, 15 patients with minimal-mild endometriosis and 13 patients with normal pelvises were compared.
RESULTS: The level of lipid peroxides were not affected by the presence nor the severity of endometriosis.
CONCLUSION: Accelerated lipid peroxidation does not appear to play a role in the causal relationship between endometriosis and infertility.
DESIGN: Body weight and length/height were measured. The LMS method was used for calculating smoothened body-weight- and BMI-for-age percentile values. The standardized site effect (SSE) values were used for identifying large differences (i.e. $\left| {{\rm SSE}} \right|$ >0·5) between the pooled SEANUTS sample and the remaining pooled SEANUTS samples after excluding one single country each time, as well as with WHO growth references.
SETTING: Malaysia, Thailand, Vietnam and Indonesia.
SUBJECTS: Data from 14 202 eligible children.
RESULTS: The SSE derived from the comparisons of the percentile values between the pooled and the remaining pooled SEANUTS samples were indicative of small/acceptable (i.e. $\left| {{\rm SSE}} \right|$ ≤0·5) differences. In contrast, the comparisons of the pooled SEANUTS sample with WHO revealed large differences in certain percentiles.
CONCLUSIONS: The findings of the present study support the use of percentile values derived from the pooled SEANUTS sample for evaluating the weight status of children in each SEANUTS country. Nevertheless, large differences were observed in certain percentiles values when SEANUTS and WHO reference values were compared.
OBJECTIVE: The primary study objective was to evaluate the postprandial fate of tocotrienols and alpha-tocopherol in human plasma and lipoproteins.
DESIGN: Seven healthy volunteers (4 males, 3 females) were administered a single dose of vitamin E [1011 mg palm tocotrienol-rich fraction (TRF) or 1074 mg alpha-tocopherol] after a 7-d conditioning period with a tocotrienol-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of tocopherol and tocotrienol isomers in plasma, triacylglycerol-rich particles (TRPs), LDLs, and HDLs were measured at each interval.
RESULTS: After intervention with TRF, plasma tocotrienols peaked at 4 h (4.79 +/- 1.2 microg/mL), whereas alpha-tocopherol peaked at 6 h (13.46 +/- 1.68 microg/mL). Although tocotrienols were similarly detected in TRPs, LDLs, and HDLs, tocotrienol concentrations were significantly lower than alpha-tocopherol concentrations. In comparison, plasma alpha-tocopherol peaked at 8 h (24.3 +/- 5.22 microg/mL) during the alpha-tocopherol treatment and emerged as the major vitamin E isomer detected in plasma and lipoproteins during both the TRF and the alpha-tocopherol treatments.
CONCLUSIONS: Tocotrienols are detected in postprandial plasma, albeit in significantly lower concentrations than is alpha-tocopherol. This finding confirms previous observations that, in the fasted state, tocotrienols are not detected in plasma. Tocotrienol transport in lipoproteins appears to follow complex biochemically mediated pathways within the lipoprotein cascade.