RESULTS: This work describes a computational methodology to achieve this analysis, with data of dengue, West Nile, hepatitis A, HIV-1, and influenza A viruses as examples. Our methodology has been implemented as an analytical pipeline that brings significant advancement to the field of reverse vaccinology, enabling systematic screening of known sequence data in nature for identification of vaccine targets. This includes key steps (i) comprehensive and extensive collection of sequence data of viral proteomes (the virome), (ii) data cleaning, (iii) large-scale sequence alignments, (iv) peptide entropy analysis, (v) intra- and inter-species variation analysis of conserved sequences, including human homology analysis, and (vi) functional and immunological relevance analysis.
CONCLUSION: These steps are combined into the pipeline ensuring that a more refined process, as compared to a simple evolutionary conservation analysis, will facilitate a better selection of vaccine targets and their prioritization for subsequent experimental validation.
RESULTS: Multilocus phylogenetic analyses showed that deep evolutionary relationships including the genera Sigalegalephrynus, Ghatophryne, Parapelophryne, Leptophryne, Pseudobufo, Rentapia, and Phrynoides remain unresolved. Comparison of genetic divergences revealed that intraspecific divergences among allopatric populations of Pelophyrne signata (Borneo vs. Peninsular Malaysia), Ingerophrynus parvus (Peninsular Malaysia vs. Myanmar), and Leptophryne borbonica (Peninsular Malaysia, Java, Borneo, and Sumatra) are consistent with interspecific divergences of other Southeast Asian bufonid taxa. Conversely, interspecific divergences between Pelophryne guentheri/P. api, Ansonia latiffi/A. leptopus, and I. gollum/I. divergens were low (