Displaying publications 201 - 220 of 282 in total

Abstract:
Sort:
  1. Chang SW, Abdul-Kareem S, Merican AF, Zain RB
    BMC Bioinformatics, 2013;14:170.
    PMID: 23725313 DOI: 10.1186/1471-2105-14-170
    Machine learning techniques are becoming useful as an alternative approach to conventional medical diagnosis or prognosis as they are good for handling noisy and incomplete data, and significant results can be attained despite a small sample size. Traditionally, clinicians make prognostic decisions based on clinicopathologic markers. However, it is not easy for the most skilful clinician to come out with an accurate prognosis by using these markers alone. Thus, there is a need to use genomic markers to improve the accuracy of prognosis. The main aim of this research is to apply a hybrid of feature selection and machine learning methods in oral cancer prognosis based on the parameters of the correlation of clinicopathologic and genomic markers.
    Matched MeSH terms: Artificial Intelligence*
  2. Hamedi M, Salleh ShH, Tan TS, Ismail K, Ali J, Dee-Uam C, et al.
    Int J Nanomedicine, 2011;6:3461-72.
    PMID: 22267930 DOI: 10.2147/IJN.S26619
    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.
    Matched MeSH terms: Artificial Intelligence*
  3. Moein S
    Adv Exp Med Biol, 2010;680:109-16.
    PMID: 20865492 DOI: 10.1007/978-1-4419-5913-3_13
    In this paper, application of Artificial Neural Network (ANN) for electrocardiogram (ECG) signal noise removal has been investigated. First, 100 number of ECG signals are selected from Physikalisch-Technische Bundesanstalt (PTB) database and Kalman filter is applied to remove their low pass noise. Then a suitable dataset based on denoised ECG signal is configured and used to a Multilayer Perceptron (MLP) neural network to be trained. Finally, results and experiences are discussed and the effect of changing different parameters for MLP training is shown.
    Matched MeSH terms: Artificial Intelligence*
  4. Al-Azzawi N, Sakim HA, Abdullah AK, Ibrahim H
    PMID: 19965249 DOI: 10.1109/IEMBS.2009.5335180
    We present an efficient method for the fusion of medical captured images using different modalities that enhances the original images and combines the complementary information of the various modalities. The contourlet transform has mainly been employed as a fusion technique for images obtained from equal or different modalities. The limitation of directional information of dual-tree complex wavelet (DT-CWT) is rectified in dual-tree complex contourlet transform (DT-CCT) by incorporating directional filter banks (DFB) into the DT-CWT. The DT-CCT produces images with improved contours and textures, while the property of shift invariance is retained. To improve the fused image quality, we propose a new method for fusion rules based on principle component analysis (PCA) which depend on frequency component of DT-CCT coefficients (contourlet domain). For low frequency components, PCA method is adopted and for high frequency components, the salient features are picked up based on local energy. The final fusion image is obtained by directly applying inverse dual tree complex contourlet transform (IDT-CCT) to the fused low and high frequency components. The experimental results showed that the proposed method produces fixed image with extensive features on multimodality.
    Matched MeSH terms: Artificial Intelligence*
  5. Haidar AM, Mohamed A, Al-Dabbagh M, Hussain A, Masoum M
    Int J Neural Syst, 2009 Dec;19(6):473-9.
    PMID: 20039470
    Load shedding is some of the essential requirement for maintaining security of modern power systems, particularly in competitive energy markets. This paper proposes an intelligent scheme for fast and accurate load shedding using neural networks for predicting the possible loss of load at the early stage and neuro-fuzzy for determining the amount of load shed in order to avoid a cascading outage. A large scale electrical power system has been considered to validate the performance of the proposed technique in determining the amount of load shed. The proposed techniques can provide tools for improving the reliability and continuity of power supply. This was confirmed by the results obtained in this research of which sample results are given in this paper.
    Matched MeSH terms: Artificial Intelligence*
  6. Mueen A, Zainuddin R, Baba MS
    J Digit Imaging, 2008 Sep;21(3):290-5.
    PMID: 17846834
    Image retrieval at the semantic level mostly depends on image annotation or image classification. Image annotation performance largely depends on three issues: (1) automatic image feature extraction; (2) a semantic image concept modeling; (3) algorithm for semantic image annotation. To address first issue, multilevel features are extracted to construct the feature vector, which represents the contents of the image. To address second issue, domain-dependent concept hierarchy is constructed for interpretation of image semantic concepts. To address third issue, automatic multilevel code generation is proposed for image classification and multilevel image annotation. We make use of the existing image annotation to address second and third issues. Our experiments on a specific domain of X-ray images have given encouraging results.
    Matched MeSH terms: Artificial Intelligence*
  7. Javed F, Venkatachalam PA, Hani AF
    J Med Eng Technol, 2007 Sep-Oct;31(5):341-50.
    PMID: 17701779 DOI: 10.1080/03091900600887876
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and due to the lack of early detection techniques, the incidence of CVD is increasing day by day. In order to address this limitation, a knowledge based system with embedded intelligent heart sound analyser (KBHSA) has been developed to diagnose cardiovascular disorders at early stages. The system analyses digitized heart sounds that are recorded from an electronic stethoscope using advanced digital signal processing and artificial intelligence techniques. KBHSA takes into account data including the patient's personal and past medical history, clinical examination, auscultation findings, chest x-ray and echocardiogram, and provides a list of diseases that it has diagnosed. The system can assist the general physician in making more accurate and reliable diagnosis under emergency conditions where expert cardiologists and advanced equipment are not readily available. To test the validity of the system, abnormal heart sound samples and medical data from 40 patients were recorded and analysed. The diagnoses made by the system were counter checked by four senior cardiologists in Malaysia. The results show that the findings of KBHSA coincide with those of cardiologists.
    Matched MeSH terms: Artificial Intelligence*
  8. Yap PT, Paramesran R
    IEEE Trans Pattern Anal Mach Intell, 2005 Dec;27(12):1996-2002.
    PMID: 16355666
    Legendre moments are continuous moments, hence, when applied to discrete-space images, numerical approximation is involved and error occurs. This paper proposes a method to compute the exact values of the moments by mathematically integrating the Legendre polynomials over the corresponding intervals of the image pixels. Experimental results show that the values obtained match those calculated theoretically, and the image reconstructed from these moments have lower error than that of the conventional methods for the same order. Although the same set of exact Legendre moments can be obtained indirectly from the set of geometric moments, the computation time taken is much longer than the proposed method.
    Matched MeSH terms: Artificial Intelligence*
  9. Teoh AB, Goh A, Ngo DC
    IEEE Trans Pattern Anal Mach Intell, 2006 Dec;28(12):1892-901.
    PMID: 17108365
    Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.
    Matched MeSH terms: Artificial Intelligence*
  10. Jalalian A, Mashohor SB, Mahmud HR, Saripan MI, Ramli AR, Karasfi B
    Clin Imaging, 2013 May-Jun;37(3):420-6.
    PMID: 23153689 DOI: 10.1016/j.clinimag.2012.09.024
    Breast cancer is the most common form of cancer among women worldwide. Early detection of breast cancer can increase treatment options and patients' survivability. Mammography is the gold standard for breast imaging and cancer detection. However, due to some limitations of this modality such as low sensitivity especially in dense breasts, other modalities like ultrasound and magnetic resonance imaging are often suggested to achieve additional information. Recently, computer-aided detection or diagnosis (CAD) systems have been developed to help radiologists in order to increase diagnosis accuracy. Generally, a CAD system consists of four stages: (a) preprocessing, (b) segmentation of regions of interest, (c) feature extraction and selection, and finally (d) classification. This paper presents the approaches which are applied to develop CAD systems on mammography and ultrasound images. The performance evaluation metrics of CAD systems are also reviewed.
    Matched MeSH terms: Artificial Intelligence*
  11. Jaafar H, Ibrahim S, Ramli DA
    Comput Intell Neurosci, 2015;2015:360217.
    PMID: 26113861 DOI: 10.1155/2015/360217
    Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%.
    Matched MeSH terms: Artificial Intelligence*
  12. Cheah YN, Abidi SS
    PMID: 10724990
    In this paper we suggest that the healthcare enterprise needs to be more conscious of its vast knowledge resources vis-à-vis the exploitation of knowledge management techniques to efficiently manage its knowledge. The development of healthcare enterprise memory is suggested as a solution, together with a novel approach advocating the operationalisation of healthcare enterprise memories leading to the modelling of healthcare processes for strategic planning. As an example, we present a simulation of Service Delivery Time in a hospital's OPD.
    Matched MeSH terms: Artificial Intelligence*
  13. Abidi SS
    PMID: 10724989
    The 21st century promises to usher in an era of Internet based healthcare services--Tele-Healthcare. Such services augur well with the on-going paradigm shift in healthcare delivery patterns, i.e. patient centred services as opposed to provider centred services and wellness maintenance as opposed to illness management. This paper presents a Tele-Healthcare info-structure TIDE--an 'intelligent' wellness-oriented healthcare delivery environment. TIDE incorporates two WWW-based healthcare systems: (1) AIMS (Automated Health Monitoring System) for wellness maintenance and (2) IDEAS (Illness Diagnostic & Advisory System) for illness management. Our proposal comes from an attempt to rethink the sources of possible leverage in improving healthcare; vis-à-vis the provision of a continuum of personalised home-based healthcare services that emphasise the role of the individual in self health maintenance.
    Matched MeSH terms: Artificial Intelligence*
  14. Abidi SS
    PMID: 10724926
    Presently, there is a growing demand from the healthcare community to leverage upon and transform the vast quantities of healthcare data into value-added, 'decision-quality' knowledge, vis-à-vis, strategic knowledge services oriented towards healthcare management and planning. To meet this end, we present a Strategic Knowledge Services Info-structure that leverages on existing healthcare knowledge/data bases to derive decision-quality knowledge-knowledge that is extracted from healthcare data through services akin to knowledge discovery in databases and data mining.
    Matched MeSH terms: Artificial Intelligence*
  15. Lim CP, Harrison RF, Kennedy RL
    Artif Intell Med, 1997 Nov;11(3):215-39.
    PMID: 9413607
    This paper presents a study of the application of autonomously learning multiple neural network systems to medical pattern classification tasks. In our earlier work, a hybrid neural network architecture has been developed for on-line learning and probability estimation tasks. The network has been shown to be capable of asymptotically achieving the Bayes optimal classification rates, on-line, in a number of benchmark classification experiments. In the context of pattern classification, however, the concept of multiple classifier systems has been proposed to improve the performance of a single classifier. Thus, three decision combination algorithms have been implemented to produce a multiple neural network classifier system. Here the applicability of the system is assessed using patient records in two medical domains. The first task is the prognosis of patients admitted to coronary care units; whereas the second is the prediction of survival in trauma patients. The results are compared with those from logistic regression models, and implications of the system as a useful clinical diagnostic tool are discussed.
    Matched MeSH terms: Artificial Intelligence*
  16. Timmis J, Ismail AR, Bjerknes JD, Winfield AF
    Biosystems, 2016 Aug;146:60-76.
    PMID: 27178784 DOI: 10.1016/j.biosystems.2016.04.001
    Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots.
    Matched MeSH terms: Artificial Intelligence*
  17. Farook TH, Jamayet NB, Abdullah JY, Alam MK
    Pain Res Manag, 2021;2021:6659133.
    PMID: 33986900 DOI: 10.1155/2021/6659133
    Purpose: The study explored the clinical influence, effectiveness, limitations, and human comparison outcomes of machine learning in diagnosing (1) dental diseases, (2) periodontal diseases, (3) trauma and neuralgias, (4) cysts and tumors, (5) glandular disorders, and (6) bone and temporomandibular joint as possible causes of dental and orofacial pain.

    Method: Scopus, PubMed, and Web of Science (all databases) were searched by 2 reviewers until 29th October 2020. Articles were screened and narratively synthesized according to PRISMA-DTA guidelines based on predefined eligibility criteria. Articles that made direct reference test comparisons to human clinicians were evaluated using the MI-CLAIM checklist. The risk of bias was assessed by JBI-DTA critical appraisal, and certainty of the evidence was evaluated using the GRADE approach. Information regarding the quantification method of dental pain and disease, the conditional characteristics of both training and test data cohort in the machine learning, diagnostic outcomes, and diagnostic test comparisons with clinicians, where applicable, were extracted.

    Results: 34 eligible articles were found for data synthesis, of which 8 articles made direct reference comparisons to human clinicians. 7 papers scored over 13 (out of the evaluated 15 points) in the MI-CLAIM approach with all papers scoring 5+ (out of 7) in JBI-DTA appraisals. GRADE approach revealed serious risks of bias and inconsistencies with most studies containing more positive cases than their true prevalence in order to facilitate machine learning. Patient-perceived symptoms and clinical history were generally found to be less reliable than radiographs or histology for training accurate machine learning models. A low agreement level between clinicians training the models was suggested to have a negative impact on the prediction accuracy. Reference comparisons found nonspecialized clinicians with less than 3 years of experience to be disadvantaged against trained models.

    Conclusion: Machine learning in dental and orofacial healthcare has shown respectable results in diagnosing diseases with symptomatic pain and with improved future iterations and can be used as a diagnostic aid in the clinics. The current review did not internally analyze the machine learning models and their respective algorithms, nor consider the confounding variables and factors responsible for shaping the orofacial disorders responsible for eliciting pain.

    Matched MeSH terms: Artificial Intelligence/statistics & numerical data*
  18. Pawar S, Liew TO, Stanam A, Lahiri C
    Chem Biol Drug Des, 2020 09;96(3):995-1004.
    PMID: 32410355 DOI: 10.1111/cbdd.13672
    Biomarkers can offer great promise for improving prevention and treatment of complex diseases such as cancer, cardiovascular diseases, and diabetes. These can be used as either diagnostic or predictive or as prognostic biomarkers. The revolution brought about in biological big data analytics by artificial intelligence (AI) has the potential to identify a broader range of genetic differences and support the generation of more robust biomarkers in medicine. AI is invigorating biomarker research on various fronts, right from the cataloguing of key mutations driving the complex diseases like cancer to the elucidation of molecular networks underlying diseases. In this study, we have explored the potential of AI through machine learning approaches to propose that these methods can act as recommendation systems to sort and prioritize important genes and finally predict the presence of specific biomarkers. Essentially, we have utilized microarray datasets from open-source databases, like GEO, for breast, lung, colon, and ovarian cancer. In this context, different clustering analyses like hierarchical and k-means along with random forest algorithm have been utilized to classify important genes from a pool of several thousand genes. To this end, network centrality and pathway analysis have been implemented to identify the most potential target as CREB1.
    Matched MeSH terms: Artificial Intelligence*
  19. Lau HJ, Lim CH, Foo SC, Tan HS
    Curr Genet, 2021 Jun;67(3):421-429.
    PMID: 33585980 DOI: 10.1007/s00294-021-01156-5
    Antimicrobial resistance (AMR) in bacteria is a global health crisis due to the rapid emergence of multidrug-resistant bacteria and the lengthy development of new antimicrobials. In light of this, artificial intelligence in the form of machine learning has been viewed as a potential counter to delay the spread of AMR. With the aid of AI, there are possibilities to predict and identify AMR in bacteria efficiently. Furthermore, a combination of machine learning algorithms and lab testing can help to accelerate the process of discovering new antimicrobials. To date, many machine learning algorithms for antimicrobial-resistance discovery had been created and vigorously validated. Most of these algorithms produced accurate results and outperformed the traditional methods which relied on sequence comparison within a database. This mini-review will provide an updated overview of antimicrobial design workflow using the latest machine-learning antimicrobial discovery algorithms in the last 5 years. With this review, we hope to improve upon the current AMR identification and antimicrobial development techniques by introducing the use of AI into the mix, including how the algorithms could be made more effective.
    Matched MeSH terms: Artificial Intelligence*
  20. Dawood F, Loo CK
    Int J Neural Syst, 2018 May;28(4):1750038.
    PMID: 29022403 DOI: 10.1142/S0129065717500381
    Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.
    Matched MeSH terms: Artificial Intelligence*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links