Displaying publications 201 - 220 of 267 in total

Abstract:
Sort:
  1. Sipiczki M, Tap RM
    Int J Syst Evol Microbiol, 2016 Oct;66(10):4009-4015.
    PMID: 27411802 DOI: 10.1099/ijsem.0.001302
    In a taxonomic study of yeasts isolated from flowers in Cagayan de Oro, Mindenao Island, The Philippines, strains were identified as representing Kabatiella microsticta, Metschnikowia koreensis and a hitherto undescribed dimorphic species. Sequences of the D1/D2 domains of the LSU 26S rRNA genes, the internal transcribed spacer (ITS) regions and the SSU 18S rRNA genes were identical in the strains of the last-named group and differed from the corresponding sequences of the type strain of the closest related species, Candida duobushaemulonii, by 4 % (D1/D2), 7 % (ITS) and 1 % (SSU). In an independent study, a strain with D1/D2 and ITS sequences very similar to those of the Philippine strains was isolated in Malaysia from the blood of a patient dying of aspiration pneumonia. Both groups of isolates were moderately sensitive to anidulafungin, caspofungin, fluconazole, itraconazole and voriconazole but resistant to amphotericin B. Molecular phylogenetic analysis of the sequences placed the Philippine and Malaysian isolates close to the Candida haemulonis complex of Candida species. To reflect the geographical location of the sites of sample collection, the novel species name Candida vulturna pro tempore sp. nov. is proposed to accommodate these strains. The type strain is 11-1170T (=CBS 14366T=CCY 094-001-001T=NCAIM-Y02177T) isolated in Cagayan de Oro, The Philippines. Mycobank: MB 817222.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  2. Uni S, Mat Udin AS, Agatsuma T, Saijuntha W, Junker K, Ramli R, et al.
    Parasit Vectors, 2017 Apr 20;10(1):194.
    PMID: 28427478 DOI: 10.1186/s13071-017-2105-9
    BACKGROUND: The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

    METHODS: We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing.

    RESULTS: Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews.

    CONCLUSIONS: The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani.

    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  3. Asyikha R, Sulaiman N, Mohd-Taib FS
    Trop Biomed, 2020 Dec 01;37(4):919-931.
    PMID: 33612746 DOI: 10.47665/tb.37.4.919
    Bacteria of the genus Bartonella have been known as emerging zoonotic pathogens for several human diseases including cat scratch disease, Carrion's disease and trench fever. Numerous species of small mammals have been reported to play a role as a suitable reservoir to many pathogenic Bartonella. These infections are thought to be transmitted through blood-feeding arthropod vectors such as ticks, fleas and lice. The purpose of this study is to detect the presence of Bartonella species from tick samples collected from small mammals in mangrove forests of Peninsular Malaysia. Herein, 38 individual ticks and their small mammals host were evaluated for the presence of Bartonella DNA by conventional PCR targeting the 16S rRNA intergenic spacer region (ITS) and partial sequencing of 460 bp from this locususing Bartonella genus-specific primers. Two tick individuals from Dermacentor auratus and Haemaphysalis hystricis collected from Rattus tiomanicus (host), were PCR-positive for Bartonella DNA amplification. No Bartonella amplification was possible in other tick species (Amblyomma sp.). Phylogenetic analysis of ITS fragments demonstrated that the sequences from ticks were closely related to Bartonella phoceensis, a species that has been reported from black rats (Rattus rattus) in Australia. This is the first report of a Bartonella bacteria detected in ticks from small mammals in Malaysia. Further research should be warranted to investigate the transmission of Bartonella and the potential impact of this zoonotic pathogen in animals and humans as this mangrove ecosystem is significant for local economy and tourism.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  4. Baba ZA, Hamid B, Sheikh TA, Alotaibi SH, El Enshasy HA, Ansari MJ, et al.
    Molecules, 2021 Sep 23;26(19).
    PMID: 34641302 DOI: 10.3390/molecules26195758
    Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively.
    Matched MeSH terms: DNA, Ribosomal/genetics
  5. Zhao D, Borkhanuddin MH, Wang W, Liu Y, Cech G, Zhai Y, et al.
    Parasitol Res, 2016 Nov;115(11):4317-4325.
    PMID: 27492197
    Thelohanellus kitauei is a freshwater myxosporean parasite causing intestinal giant cystic disease of common carp. To clarify the life cycle of T. kitauei, we investigated the oligochaete populations in China and Hungary. This study confirms two distinct aurantiactinomyxon morphotypes (Aurantiactinomyxon type 1 and Aurantiactinomyxon type 2) from Branchiura sowerbyi as developmental stages of the life cycle of T. kitauei. The morphological characteristics and DNA sequences of these two types are described here. Based on 18S rDNA sequence analysis, Aurantiactinomyxon type 1 (2048 bp) and Aurantiactinomyxon type 2 (2031 bp) share 99.2-99.4 %, 99.8-100 % similarity to the published sequences of T. kitauei, respectively. The 18S rDNA sequences of these two aurantiactinomyxon morphotypes share 99.4 % similarity, suggesting intraspecific variation within the taxon, possibly due to geographic origin. Phylogenetic analyses demonstrate the two aurantiactinomyxon types clustered with T. kitauei. Regardless, based on 18S rDNA synonymy, it is likely that Aurantiactinomyxon type 1 and 2 are conspecific with T. kitauei. This is the fourth elucidated two-host life cycle of Thelohanellus species and the first record of T. kitauei in Europe.
    Matched MeSH terms: DNA, Ribosomal/genetics
  6. Poli A, Romano I, Mastascusa V, Buono L, Orlando P, Nicolaus B, et al.
    Antonie Van Leeuwenhoek, 2018 Jul;111(7):1105-1115.
    PMID: 29299771 DOI: 10.1007/s10482-017-1013-5
    Strain Corallo1T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, β-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1T. A draft genome sequence of strain Corallo1T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1T are C16:1, n-C16:0 and C18:1, and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1T (= DSM 27495T = CIP 110630T).
    Matched MeSH terms: DNA, Ribosomal/genetics
  7. Al-Ashwal MA, Al-Adhroey AH, Atroosh WM, Al-Subbary AA, Albhri AA, Azlan UW, et al.
    Parasitol Res, 2024 Jun 27;123(6):256.
    PMID: 38935203 DOI: 10.1007/s00436-024-08273-3
    Cutaneous leishmaniasis (CL), a neglected tropical disease, is a major public health concern in Yemen, with Leishmania tropica identified as the main causative agent. This study aims to investigate the occurrence and distribution of Leishmania parasites in domestic and wild animals in CL endemic areas in the western highlands of Yemen. A cross-sectional study was conducted in the Utmah District of western Yemen. Blood and skin scraping specimens were collected from 122 domestic and wild animals and tested for the Leishmania DNA using internal transcribed spacer 1 (ITS1) nested polymerase chain reaction. Phylogenetic analyses were performed on 20 L. tropica sequences obtained from animals in this study and 34 sequences from human isolates (collected concurrently from the same study area) retrieved from the GenBank. Overall, L. tropica was detected in 16.4% (20/122) of the examined animals, including 11 goats, two dogs, two bulls, one cow, one donkey, one rabbit, one rat and one bat. None of the examined cats and sheep was positive. The animal sequences were segregated into four different L. tropica haplotypes, with the majority of the animal (15/20) and human (32/34) sequences composed of one dominant haplotype/genotype. These findings represent the first confirmed evidence of natural L. tropica infections in different kinds of domestic and wild animals in western Yemen, suggesting these animals potentially have a role in the transmission of CL in Yemen. Therefore, a One Health approach is required for the effective prevention and control of this devastating disease among endemic populations.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  8. Nadarajah K, Omar NS, Rosli MM, Shin Tze O
    Biomed Res Int, 2014;2014:434257.
    PMID: 25258710 DOI: 10.1155/2014/434257
    Two field isolates of Rhizoctonia solani were isolated from infected paddy plants in Malaysia. These isolates were verified via ITS-rDNA analysis that yielded ~720 bp products of the ITS1-5.8S-ITS4 region, respectively. The sequenced products showed insertion and substitution incidences which may result in strain diversity and possible variation in disease severity. These strains showed some regional and host-specific relatedness via Maximum Likelihood and further phylogenetic analysis via Maximum Parsimony showed that these strains were closely related to R. solani AG1-1A (with 99-100% identity). Subsequent to strain verification and analysis, these isolates were used in the screening of twenty rice varieties for tolerance or resistance to sheath blight via mycelial plug method where both isolates (1801 and 1802) showed resistance or moderate resistance to Teqing, TETEP, and Jasmine 85. Isolate 1802 was more virulent based on the disease severity index values. This study also showed that the mycelial plug techniques were efficient in providing uniform inoculum and humidity for screening. In addition this study shows that the disease severity index is a better mode of scoring for resistance compared to lesion length. These findings will provide a solid basis for our future breeding and screening activities at the institution.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  9. Lee YI, Yap JW, Izan S, Leitch IJ, Fay MF, Lee YC, et al.
    BMC Genomics, 2018 Aug 02;19(1):578.
    PMID: 30068293 DOI: 10.1186/s12864-018-4956-7
    BACKGROUND: Satellite DNA is a rapidly diverging, largely repetitive DNA component of many eukaryotic genomes. Here we analyse the evolutionary dynamics of a satellite DNA repeat in the genomes of a group of Asian subtropical lady slipper orchids (Paphiopedilum subgenus Parvisepalum and representative species in the other subgenera/sections across the genus). A new satellite repeat in Paphiopedilum subgenus Parvisepalum, SatA, was identified and characterized using the RepeatExplorer pipeline in HiSeq Illumina reads from P. armeniacum (2n = 26). Reconstructed monomers were used to design a satellite-specific fluorescent in situ hybridization (FISH) probe. The data were also analysed within a phylogenetic framework built using the internal transcribed spacer (ITS) sequences of 45S nuclear ribosomal DNA.

    RESULTS: SatA comprises c. 14.5% of the P. armeniacum genome and is specific to subgenus Parvisepalum. It is composed of four primary monomers that range from 230 to 359 bp and contains multiple inverted repeat regions with hairpin-loop motifs. A new karyotype of P. vietnamense (2n = 28) is presented and shows that the chromosome number in subgenus Parvisepalum is not conserved at 2n = 26, as previously reported. The physical locations of SatA sequences were visualised on the chromosomes of all seven Paphiopedilum species of subgenus Parvisepalum (2n = 26-28), together with the 5S and 45S rDNA loci using FISH. The SatA repeats were predominantly localisedin the centromeric, peri-centromeric and sub-telocentric chromosome regions, but the exact distribution pattern was species-specific.

    CONCLUSIONS: We conclude that the newly discovered, highly abundant and rapidly evolving satellite sequence SatA is specific to Paphiopedilum subgenus Parvisepalum. SatA and rDNA chromosomal distributions are characteristic of species, and comparisons between species reveal that the distribution patterns generate a strong phylogenetic signal. We also conclude that the ancestral chromosome number of subgenus Parvisepalum and indeed of all Paphiopedilum could be either 2n = 26 or 28, if P. vietnamense is sister to all species in the subgenus as suggested by the ITS data.

    Matched MeSH terms: DNA, Ribosomal/genetics
  10. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY
    Anaerobe, 2014 Aug;28:29-36.
    PMID: 24818631 DOI: 10.1016/j.anaerobe.2014.04.012
    Lactobacillus acidophilus is categorized as a probiotic strain because of its beneficial effects in human health and prevention of disease transmission. This study is aimed to characterize the probiotic potential of L. acidophilus 36YL originally isolated from the vagina of healthy and fertile Iranian women. The L. acidophilus 36YL strain was identified using 16S rDNA gene sequencing and characterized by biochemical methodologies, such as antibiotics susceptibility, antimicrobial activity, and acid and bile resistance. The bioactivity of the secretion of this strain on four human cancer cell lines (AGS, HeLa, MCF-7, and HT-29) and one normal cell line (HUVEC) was evaluated by cytotoxicity assay and apoptosis analysis. This newly isolated strain was found to exhibit notable probiotic properties, such as admirable antibiotic susceptibility, good antimicrobial activity, and favorable resistance to acid and bile salt. The results of bioactivity assessment demonstrated acceptable anticancer effects on the four tested cancer cell lines and negligible side effects on the assayed normal cell line. Our findings revealed that the anticancer effect of L. acidophilus 36YL strain secretions depends on the induction of apoptosis in cancer cells. L. acidophilus 36YL strain is considered as a nutraceutical alternative or a topical medication with a potential therapeutic index because of the absence of cytotoxicity to normal cells, but effective toxicity to cancer cell lines.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  11. Alkotaini B, Anuar N, Kadhum AA, Sani AA
    World J Microbiol Biotechnol, 2014 Apr;30(4):1377-85.
    PMID: 24272828 DOI: 10.1007/s11274-013-1558-z
    A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F-C-K-S-L-P-L-P-L-S-V-K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  12. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz J Microbiol, 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  13. Quah JX, Ambu S, Lim YA, Mahdy MA, Mak JW
    Parasitology, 2011 Apr;138(5):573-7.
    PMID: 21232175 DOI: 10.1017/S0031182010001691
    Cryptosporidium species are protozoan parasites that infect humans and a wide variety of animals. This study was aimed at identifying Cryptosporidium species and genotypes isolated from avian hosts. A total of 90 samples from 37 different species of birds were collected throughout a 3-month period from April 2008 to June 2008 in the National Zoo of Kuala Lumpur, Malaysia. Prior to molecular characterization, all samples were screened for Cryptosporidium using a modified Ziehl-Neelsen staining technique. Subsequently samples were analysed with nested-PCR targeting the partial SSU rRNA gene. Amplicons were sequenced in both directions and used for phylogenetic analysis using Neighbour-Joining and Maximum Parsimony methods. Although 9 (10%) samples were positive for Cryptosporidium via microscopy, 8 (8.9%) produced amplicons using nested PCR. Phylogenetic trees identified all the isolates as Cryptosporidium parvum. Although C. parvum has not been reported to cause infection in birds, and the role of birds in this study was postulated mainly as mechanical transporters, these present findings highlight the significant public health risk posed by birds that harbour the zoonotic species of Cryptosporidium.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  14. Lee SH, Chong CE, Lim BS, Chai SJ, Sam KK, Mohamed R, et al.
    Diagn Microbiol Infect Dis, 2007 Jul;58(3):263-70.
    PMID: 17350202
    Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium, which is the etiologic agent of melioidosis, a severe and fatal infectious disease occurring in human and animals. Distinct clinical and animal isolates have been shown to exhibit differences in phenotypic trait such as growth rate, colony morphology, antimicrobial resistance, and virulence. This study was carried out to gain insight into the intrinsic differences between 4 clinical and 6 animal B. pseudomallei isolates from Malaysia. The 16S rRNA-encoding genes from these 10 isolates of B. pseudomallei were sequenced to confirm the identity of these isolates along with the avirulent Burkholderia thailandensis. The nucleotide sequences indicated that the 16S rRNA-encoding genes among the 10 B. pseudomallei isolates were identical to each other. However, the nucleotide sequence differences in the 16S rRNA-encoding genes appeared to be B. pseudomallei and B. thailandensis specific. The growth rate of all B. pseudomallei isolates was determined by generating growth curves at 37 degrees C for 72 h. The isolates were found to differ in growth rates with doubling time varying from 1.5 to 2.3 h. In addition, the B. pseudomallei isolates exhibited considerable variation in colony morphology when grown on Ashdown media, brain-heart infusion agar, and Luria-Bertani agar over 9 days of observation. Antimicrobial susceptibility tests indicated that 80% of the isolates examined were Amp(R) Cb(R) Kn(R) Gm(R) Chl(S) Te(S). Virulence of the B. pseudomallei clinical and animal isolates was evaluated in B. pseudomallei-susceptible BALB/c mice. Most of the clinical isolates were highly virulent. However, virulence did not correlate with isolate origin since 2 of the animal isolates were also highly virulent.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  15. Ser HL, Zainal N, Palanisamy UD, Goh BH, Yin WF, Chan KG, et al.
    Antonie Van Leeuwenhoek, 2015 Jun;107(6):1369-78.
    PMID: 25863667 DOI: 10.1007/s10482-015-0431-5
    A novel Streptomyces, strain MUSC 26(T), was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The bacterium was observed to be Gram-positive and to form grayish yellow aerial and substrate mycelium on ISP 7 agar. A polyphasic approach was used to study the taxonomy of strain MUSC 26(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9 (H8) and MK-9(H6). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine and hydroxyphosphatidylmethylethanolamine. The predominant cellular fatty acids (>10.0 %) were identified as anteiso-C15:0 (31.4 %), iso-C16:0 (16.3 %), iso-C15:0 (13.9 %) and anteiso-C17:0 (12.6 %). The cell wall sugars were found to be galactose, glucose, mannose, ribose and rhamnose. These results suggest that MUSC 26(T) should be placed within the genus Streptomyces. Phylogenetic analysis indicated that closely related strains include Streptomyces qinglanensis 172205(T) (96.5 % sequence similarity), S. sodiiphilus YIM 80305(T) (96.5 %) and S. rimosus subsp. rimosus ATCC 10970(T) (96.4 %). DNA-DNA relatedness values between MUSC 26(T) and closely related type strains ranged from 17.0 ± 2.2 to 33.2 ± 5.3 %. Comparison of BOX-PCR fingerprints indicated MUSC 26(T) presents a unique DNA profile. The DNA G+C content was determined to be 74.6 mol%. Based on this polyphasic study of MUSC 26(T), it is concluded that this strain represents a novel species, for which the name Streptomyces gilvigriseus sp. nov. is proposed. The type strain is MUSC 26(T) (=DSMZ 42173(T) = MCCC 1K00504(T)).
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  16. Björkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, et al.
    Int J Syst Evol Microbiol, 2002 Jan;52(Pt 1):141-148.
    PMID: 11837296 DOI: 10.1099/00207713-52-1-141
    A taxonomic study was conducted to clarify the relationships of two bacterial populations belonging to the genus Weissella. A total of 39 strains originating mainly from Malaysian foods (22 strains) and clinical samples from humans (9 strains) and animals (6 strains) were analysed using a polyphasic taxonomic approach. The methods included classical phenotyping, whole-cell protein electrophoresis, 16S and 23S rDNA RFLP (ribotyping), determination of 16S rDNA sequence homologies and DNA-DNA reassociation levels. Based on the results, the strains were considered to represent two different species, Weissella confusa and a novel Weissella species, for which the name Weissella cibaria sp. nov. is proposed. Weisella confusa possessed the highest 16S rDNA sequence similarity to Weisella cibaria, but the DNA-DNA reassociation experiment showed hybridization levels below 49% between the strains studied. The numerical analyses of Weisella confusa and Weisella cibaria strains did not reveal any specific clustering with respect to the origin of the strains. Based on whole-cell protein electrophoresis, and ClaI and HindIII ribotyping patterns, food and clinical isolates were randomly located in the two species-specific clusters obtained.
    Matched MeSH terms: DNA, Ribosomal/analysis; DNA, Ribosomal/genetics
  17. Biglari S, Alfizah H, Ramliza R, Rahman MM
    J Med Microbiol, 2015 Jan;64(Pt 1):53-8.
    PMID: 25381148 DOI: 10.1099/jmm.0.082263-0
    Antimicrobial resistance in Acinetobacter baumannii is a growing public health concern and an important pathogen in nosocomial infections. We investigated the genes involved in resistance to carbapenems and cephalosporins in clinical A. baumannii isolates from a tertiary medical centre in Malaysia. A. baumannii was isolated from 167 clinical specimens and identified by sequencing of the 16S rRNA and rpoB genes. The MIC for imipenem, meropenem, ceftazidime and cefepime were determined by the E-test method. The presence of carbapenemase and cephalosporinase genes was investigated by PCR. The isolates were predominantly nonsusceptible to carbapenems and cephalosporins (>70 %) with high MIC values. ISAba1 was detected in all carbapenem-nonsusceptible A. baumannii harbouring the blaOXA-23-like gene. The presence of blaOXA-51-like and ISAba1 upstream of blaOXA-51 was not associated with nonsusceptibility to carbapenems. A. baumannii isolates harbouring ISAba1-blaADC (85.8 %) were significantly associated with nonsusceptibility to cephalosporins (P<0.0001). However, ISAba1-blaADC was not detected in a minority (<10 %) of the isolates which were nonsusceptible to cephalosporins. The acquired OXA-23 enzymes were responsible for nonsusceptibility to carbapenems in our clinical A. baumannii isolates and warrant continuous surveillance to prevent further dissemination of this antibiotic resistance gene. The presence of ISAba1 upstream of the blaADC was a determinant for cephalosporin resistance. However, the absence of this ISAba1-blaADC in some of the isolates may suggest other resistance mechanisms and need further investigation.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  18. Latif B, Kannan Kutty M, Muslim A, Hussaini J, Omar E, Heo CC, et al.
    Trop Biomed, 2015 Sep;32(3):444-52.
    PMID: 26695204 MyJurnal
    One thousand and forty-five tissue samples of skeletal muscles, tongue, heart, diaphragm and esophagus were collected from 209 animals (43 sheep, 89 goats and 77 cattle) from an abattoir in Selangor between February and October, 2013. Each sample was divided into three pieces with each piece measuring 2-3 mm3. Each piece was then squeezed between two glass slides and examined microscopically at x 10 magnification for the presence of sarcocystosis. Three positive samples from each animal species were then fixed in 10% formalin for histological processing. Seven positive samples collected from each animal species were preserved at -80°C or 90% ethanol for gene expression studies. Microsarcocysts were detected in 114 (54.5%) animals by light microscopy (LM). The infection rates in sheep, goat and cattle were 86, 61.8 and 28.6% respectively. The highest rate of infection was in the skeletal muscles of sheep (64.9%) and goats (63.6%) and in the heart of cattle (63.6%). The cysts were spindle to oval in shape and two stages were recognized, the peripheral metrocytes and centrally located banana-shaped bradyzoites. 18S rRNA gene expression studies confirmed the isolates from the sheep as S. ovicanis, goats as S. capracanis and cattle as S. bovicanis. This, to the best of our knowledge, is the first molecular identification of an isolate of S. ovicanis and S. capracanis in Malaysia. Further studies with electron microscopy (EM) are required in the future to compare the features of different types of Sarcocysts spp.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  19. Tay ST, Koh FX, Kho KL, Ong BL
    Trop Biomed, 2014 Dec;31(4):769-76.
    PMID: 25776603 MyJurnal
    This study was conducted to determine the occurrence of Anaplasma spp. in the blood samples of cattle, goats, deer and ticks in a Malaysian farm. Using polymerase chain reaction (PCR) and sequencing approach, Anaplasma spp. was detected from 81(84.4%) of 96 cattle blood samples. All blood samples from 23 goats and 22 deer tested were negative. Based on the analysis of the Anaplasma partial 16S ribosomal RNA gene, four sequence types (genotypes 1 to 4) were identified in this study. Genotypes 1-3 showed high sequence similarity to those of Anaplasma platys/ Anaplasma phagocytophilum, whilst genotype 4 was identical to those of Anaplasma marginale/ Anaplasma centrale/ Anaplasma ovis. Anaplasma DNA was detected from six (5.5%) of 109 ticks which were identified as Rhipicephalus (formely known as Boophilus) microplus ticks collected from the cattle. This study reported for the first time the detection of four Anaplasma sequence types circulating in the cattle population in a farm in Malaysia. The detection of Anaplasma DNA in R. microplus ticks in this study provides evidence that the ticks are one of the potential vectors for transmission of anaplasmosis in the cattle.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Ribosomal/chemistry
  20. Chua PK, Corkill JE, Hooi PS, Cheng SC, Winstanley C, Hart CA
    Emerg Infect Dis, 2005 Feb;11(2):271-7.
    PMID: 15752446
    An obligate intracellular bacterium was isolated from urine samples from 7 (3.5%) of 202 fruit bats (Eonycteris spelaea) in peninsular Malaysia. The bacterium produced large membrane-bound inclusions in human, simian, and rodent cell lines, including epithelial, fibroblastlike, and lymphoid cells. Thin-section electron microscopy showed reticulate bodies dividing by binary fission and elementary bodies in the inclusions; mitochondria surrounded the inclusions. The inclusions were positive for periodic acid-Schiff stain but could not be stained by fluorescein-labeled anti-Chlamydia trachomatis major outer membrane protein monoclonal antibody. The bacterium was resistant to penicillin and streptomycin (MICs > 256 mg/L) but susceptible to tetracycline (MIC = 0.25 mg/L) and chloramphenicol (MIC = 0.5 mg/L). Sequence analysis of the 16SrRNA gene indicated that it was most closely related to 2 isolates of Waddlia chondrophila (94% and 96% identity). The 16S and 23S rRNA gene signatures were only 91% identical. We propose this novel bacterium be called W. malaysiensis.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics; DNA, Ribosomal Spacer/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links