Displaying publications 2261 - 2280 of 2693 in total

Abstract:
Sort:
  1. Greer GJ, Ow-Yang CK, Yong HS
    J Parasitol, 1988 Jun;74(3):471-80.
    PMID: 3379527
    Schistosoma malayensis n. sp., a member of the Schistosoma japonicum complex is described from Rattus muelleri in Peninsular Malaysia and 2 strains are characterized. The only morphological differences noted among adults from natural hosts were that S. malayensis are in general smaller than S. mekongi and S. japonicum. But these differences may be the result of host-induced variations and therefore are of little taxonomic value. To minimize the effects of host-induced variations, adult worms recovered from laboratory mice with similar worm burdens at 50-56 days postinfection were compared. These comparisons revealed only minor morphometric differences among these 3 species. Schistosoma malayensis eggs from naturally and experimentally infected hosts are most similar to those of S. mekongi, with eggs of both species being, in general, smaller than those of S. japonicum. The egg index for S. malayensis is usually higher than for S. japonicum and lower than for S. mekongi. Differences were noted in the developmental rates in mice for 2 isolates of S. malayensis, S. mekongi, and S. japonicum (Philippine strain), but relatively large differences observed between isolates of S. malayensis indicate that, in this case, the developmental rate is not a useful taxonomic character. Schistosoma malayensis is erected principally on the basis of differences, reported elsewhere, in the life histories and in the electrophoretic migration patterns of isoenzymes of adult worms as compared to S. mekongi and S. japonicum. These comparisons indicate that S. malayensis is more closely related to S. mekongi than to S. japonicum.
    Matched MeSH terms: Rats
  2. Zainal Z, Rahim AA, Radhakrishnan AK, Chang SK, Khaza'ai H
    Sci Rep, 2019 11 14;9(1):16793.
    PMID: 31727971 DOI: 10.1038/s41598-019-53424-7
    The tocotrienol-rich fraction (TRF) from palm oil contains vitamin E, which possesses potent antioxidant and anti-inflammatory activities. Rheumatoid arthritis (RA) is a chronic joint inflammatory disease characterised by severe joint pain, cartilage destruction, and bone erosion owing to the effects of various pro-inflammatory mediators and cytokines. Here, we investigated the therapeutic effects of TRF in a rat model of collagen-induced arthritis (CIA). Arthritis was induced by a single intradermal injection of collagen type II in Dark Agouti (DA) rats. Rats were then treated with or without TRF by oral gavage from day 28 after the first collagen injection. Arthritic rats supplemented with TRF showed decreased articular index scores, ankle circumferences, paw volumes, and radiographic scores when compared with untreated rats. The untreated arthritic rats showed higher plasma C-reactive protein levels (p 
    Matched MeSH terms: Rats
  3. John CM, Khaddaj Mallat R, Mishra RC, George G, Singh V, Turnbull JD, et al.
    Pharmacol Res, 2020 01;151:104539.
    PMID: 31707036 DOI: 10.1016/j.phrs.2019.104539
    Aging represents an independent risk factor for the development of cardiovascular disease, and is associated with complex structural and functional alterations in the vasculature, such as endothelial dysfunction. Small- and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) are prominently expressed in the vascular endothelium, and pharmacological activators of these channels induce robust vasodilation upon acute exposure in isolated arteries and intact animals. However, the effects of prolonged in vivo administration of such compounds are unknown. In our study, we hypothesized that such treatment would ameliorate aging-related cardiovascular deficits. Aged (∼18 months) male Sprague Dawley rats were treated daily with either vehicle or the KCa channel activator SKA-31 (10 mg/kg, intraperitoneal injection; n = 6/group) for 8 weeks, followed by echocardiography, arterial pressure myography, immune cell and plasma cytokine characterization, and tissue histology. Our results show that SKA-31 administration improved endothelium-dependent vasodilation, reduced agonist-induced vascular contractility, and prevented the aging-associated declines in cardiac ejection fraction, stroke volume and fractional shortening, and further improved the expression of endothelial KCa channels and associated cell signalling components to levels similar to those observed in young male rats (∼5 months at end of study). SKA-31 administration did not promote pro-inflammatory changes in either T cell populations or plasma cytokines/chemokines, and we observed no overt tissue histopathology in heart, kidney, aorta, brain, liver and spleen. SKA-31 treatment in young rats had little to no effect on vascular reactivity, select protein expression, tissue histology, plasma cytokines/chemokines or immune cell properties. Collectively, these data demonstrate that administration of the KCa channel activator SKA-31 improved aging-related cardiovascular function, without adversely affecting the immune system or promoting tissue toxicity.
    Matched MeSH terms: Rats, Sprague-Dawley
  4. Siran R, Ahmad AH, Abdul Aziz CB, Ismail Z
    J Physiol Biochem, 2014 Dec;70(4):877-89.
    PMID: 25218926 DOI: 10.1007/s13105-014-0356-x
    REM sleep is a crucial component of sleep. Animal studies indicate that rapid eye movement (REM) sleep deprivation elicits changes in gene expression. Down regulatory antagonist modulator (DREAM) is a protein which downregulates other gene transcriptions by binding to the downstream response element site. The aim of this study is to examine the effect of REM sleep deprivation on DREAM expression in ventrobasal thalamic nuclei (VB) of rats. Seventy-two male Sprague-Dawley rats were divided into four major groups consisting of free-moving control rats (FMC) (n = 18), 72-h REM sleep-deprived rats (REMsd) (n = 18), 72-h REM sleep-deprived rats with 72-h sleep recovery (RG) (n = 18), and tank control rats (TC) (n = 18). REM sleep deprivation was elicited using the inverted flower pot technique. DREAM expression was examined in VB by immunohistochemical, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) studies. The DREAM-positive neuronal cells (DPN) were decreased bilaterally in the VB of rats deprived of REM sleep as well as after sleep recovery. The nuclear DREAM extractions were increased bilaterally in animals deprived of REM sleep. The DREAM messenger RNA (mRNA) levels were decreased after sleep recovery. The results demonstrated a link between DREAM expression and REM sleep deprivation as well as sleep recovery which may indicate potential involvement of DREAM in REM sleep-induced changes in gene expression, specifically in nociceptive processing.
    Matched MeSH terms: Rats, Sprague-Dawley
  5. Sudi SB, Tanaka T, Oda S, Nishiyama K, Nishimura A, Sunggip C, et al.
    Sci Rep, 2019 07 05;9(1):9785.
    PMID: 31278358 DOI: 10.1038/s41598-019-46252-2
    Myocardial atrophy, characterized by the decreases in size and contractility of cardiomyocytes, is caused by severe malnutrition and/or mechanical unloading. Extracellular adenosine 5'-triphosphate (ATP), known as a danger signal, is recognized to negatively regulate cell volume. However, it is obscure whether extracellular ATP contributes to cardiomyocyte atrophy. Here, we report that ATP induces atrophy of neonatal rat cardiomyocytes (NRCMs) without cell death through P2Y2 receptors. ATP led to overproduction of reactive oxygen species (ROS) through increased amount of NADPH oxidase (Nox) 2 proteins, due to increased physical interaction between Nox2 and canonical transient receptor potential 3 (TRPC3). This ATP-mediated formation of TRPC3-Nox2 complex was also pathophysiologically involved in nutritional deficiency-induced NRCM atrophy. Strikingly, knockdown of either TRPC3 or Nox2 suppressed nutritional deficiency-induced ATP release, as well as ROS production and NRCM atrophy. Taken together, we propose that TRPC3-Nox2 axis, activated by extracellular ATP, is the key component that mediates nutritional deficiency-induced cardiomyocyte atrophy.
    Matched MeSH terms: Rats
  6. Lee CY
    Clin Exp Pharmacol Physiol, 2013 Jun;40(6):385-91.
    PMID: 23586523 DOI: 10.1111/1440-1681.12096
    Psychosocial stress is reported to be one of the main causes of obesity. Based on observations in studies that relate stress and gut inflammation to obesity, the present study hypothesized that chronic stress, via inflammation, alters the expression of nutrient transporters and contributes to the development of metabolic syndrome. Rats were exposed to restraint stress for 4 h/day for 5 days/week for eight consecutive weeks. Different segments of rat intestine were then collected and analysed for signs of pathophysiological changes and the expression of Niemann-Pick C1-like-1 (NPC1L1), sodium-dependent glucose transporter-1 (SLC5A1, previously known as SGLT1) and facilitative glucose transporter-2 (SLC2A2, previously known as GLUT2). In a separate experiment, the total anti-oxidant activity (TAA)-time profile of control isolated intestinal segments was measured. Stress decreased the expression of NPC1L1 in the ileum and upregulated SLC5A1 in both the jejunum and ileum and SLC2A2 in the duodenum. Inflammation and morphological changes were observed in the proximal region of the intestine of stressed animals. Compared with jejunal and ileal segments, the rate of increase in TAA was higher in the duodenum, indicating that the segment contained less anti-oxidants; anti-oxidants may function to protect the tissues. In conclusion, stress alters the expression of hexose and lipid transporters in the gut. The site-specific increase in the expression of SLC5A1 and SLC2A2 may be correlated with pathological changes in the intestine. The ileum may be protected, in part, by gut anti-oxidants. Collectively, the data suggest that apart from causing inflammation, chronic stress may promote sugar uptake and contribute to hyperglycaemia.
    Matched MeSH terms: Rats
  7. Kamalden TA, Macgregor-Das AM, Kannan SM, Dunkerly-Eyring B, Khaliddin N, Xu Z, et al.
    Antioxid Redox Signal, 2017 Nov 01;27(13):913-930.
    PMID: 28173719 DOI: 10.1089/ars.2016.6844
    AIMS: MicroRNAs (miRNAs), one type of noncoding RNA, modulate post-transcriptional gene expression in various pathogenic pathways in type 2 diabetes (T2D). Currently, little is known about how miRNAs influence disease pathogenesis by targeting cells at a distance. The purpose of this study was to investigate the role of exosomal miRNAs during T2D.

    RESULTS: We show that miR-15a is increased in the plasma of diabetic patients, correlating with disease severity. miR-15 plays an important role in insulin production in pancreatic β-cells. By culturing rat pancreatic β-cells (INS-1) cells in high-glucose media, we identified a source of increased miR-15a in the blood as exosomes secreted by pancreatic β-cells. We postulate that miR-15a, produced in pancreatic β-cells, can enter the bloodstream and contribute to retinal injury. miR-15a overexpression in Müller cells can be induced by exposing Müller cells to exosomes derived from INS-1 cells under high-glucose conditions and results in oxidative stress by targeting Akt3, which leads to apoptotic cell death. The in vivo relevance of these findings is supported by results from high-fat diet and pancreatic β-cell-specific miR-15a-/- mice.

    INNOVATION: This study highlights an important and underappreciated mechanism of remote cell-cell communication (exosomal transfer of miRNA) and its influence on the development of T2D complications.

    CONCLUSION: Our findings suggest that circulating miR-15a contributes to the pathogenesis of diabetes and supports the concept that miRNAs released by one cell type can travel through the circulation and play a role in disease progression via their transfer to different cell types, inducing oxidative stress and cell injury. Antioxid. Redox Signal. 27, 913-930.

    Matched MeSH terms: Rats
  8. Md Nazir N, Zulkifly AH, Khalid KA, Zainol I, Zamli Z, Sha'ban M
    Tissue Eng Regen Med, 2019 06;16(3):285-299.
    PMID: 31205857 DOI: 10.1007/s13770-019-00191-1
    Background: This study aimed to observe the cartilaginous matrix production in SRY (sex determining region Y)-box 9 (SOX9)- and/or telomerase reverse transcriptase (TERT)-transfected chondrocytes from monolayer to three-dimensional (3D) culture.

    Methods: The genes were transferred into chondrocytes at passage-1 (P1) via lipofection. The post-transfected chondrocytes (SOX9-, TERT- and SOX9/TERT) were analysed at P1, P2 and P3. The non-transfected group was used as control. The 3D culture was established using the chondrocytes seeded in a disc-shaped PLGA/fibrin and PLGA scaffolds. The resulting 3D "cells-scaffolds" constructs were analysed at week-1, -2 and -3. The histoarchitecture was evaluated using haematoxylin and eosin, alcian blue and safranin o stains. The quantitative sulphated glycosaminoglycan (sGAG) content was measured using biochemical assay. The cartilage-specific markers expression were analysed via real-time polymerase chain reaction.

    Results: All monolayer cultured chondrocytes showed flattened, fibroblast-like appearance throughout passages. Proteoglycan and sGAG were not detected at the pericellular matrix region of the chondrocytes. The sGAG content assay indicated the matrix production depletion in the culture. The cartilage-specific markers, COL2A1 and ACAN, were downregulated. However, the dedifferentiation marker, COL1A1 was upregulated. In 3D "cells-scaffolds" constructs, regardless of transfection groups, chondrocytes seeded in PLGA/fibrin showed a more uniform distribution and produced denser matrix than the PLGA group especially at week-3. Both sGAG and proteoglycan were clearly visualised in the constructs, supported by the increment of sGAG content, quantitatively. Both COL2A1 and ACAN were upregulated in SOX9/TERT-PLGA and SOX9/TERT-PLGA/fibrin respectively. While, COL1A1 was downregulated in SOX9/TERT-PLGA.

    Conclusion: These findings indicated that the SOX9/TERT-transfected chondrocytes incorporation into 3D scaffolds facilitates the cartilage regeneration which is viable structurally and functionally.

    Matched MeSH terms: Rats
  9. Fujimoto Y, Suzuki Y, Kanaiwa T, Amiya T, Hoshi K, Fujino S
    J. Pharmacobio-dyn., 1983 Feb;6(2):128-35.
    PMID: 6306201
    The present research is on a milky sap obtained from the Antiaris toxicaria tree (Moraceae) which is called Upas or Ipoh in Indonesia. The crude sap was administered to anesthetized rats, and changes in electrocardiogram (ECG) and systemic blood pressure was observed. Biologically and pharmacologically active components were extracted from the crude sap by means of water-acetone solution. Based on the strength of chemical qualitative detection tests of the sap extract (SE), cardiac glycosides are supposed to be the main components. The SE inhibited the Na+-, K+-ATPase (EC 3.6.1.3) which was partially purified from guinea pig heart muscle. When the SE and, concurrently, authentic ouabain were applied to isolated frog heart muscles, the fall of twitch tension was observed after the increased tension on mechanograms. These facts suggest that the main components of the milky sap are cardiac glycosides, and glycosides affect Na+, K+-ATPase activity of muscle membrane and heart muscle contraction.
    Matched MeSH terms: Rats
  10. Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH
    Anal Bioanal Chem, 2011 Mar;399(8):2747-53.
    PMID: 21249338 DOI: 10.1007/s00216-011-4660-9
    Mitragyna speciosa (Kratom) is currently used as a drug of abuse. When monitoring its abuse in urine, several alkaloids and their metabolites must be considered. In former studies, mitragynine (MG), its diastereomer speciogynine (SG), and paynantheine and their metabolites could be identified in rat and human urine using LC-MS(n). In Kratom users' urines, besides MG and SG, further isomeric compounds were detected. To elucidate whether the MG and SG diastereomer speciociliatine (SC) and its metabolites represent further compounds, the phase I and II metabolites of SC were identified first in rat urine after the administration of the pure alkaloid. Then, the identified rat metabolites were screened for in the urine of Kratom users using the above-mentioned LC-MS(n) procedure. Considering the mass spectra and retention times, it could be confirmed that SC and its metabolites are so far the unidentified isomers in human urine. In conclusion, SC and its metabolites can be used as further markers for Kratom use, especially by consumption of raw material or products that contain a high amount of fruits of the Malaysian plant M. speciosa.
    Matched MeSH terms: Rats
  11. Wan Omar WFN, Giribabu N, Karim K, Salleh N
    J Ethnopharmacol, 2019 Dec 05;245:112175.
    PMID: 31442621 DOI: 10.1016/j.jep.2019.112175
    ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (Blume) Kuntze has traditionally been used to firm the uterus after delivery, however scientific evidences behind this claim is still lacking.

    AIMS OF STUDY: To demonstrate Marantodes pumilum leaves aqueous extract (MPE) has an effect on uterine contraction after delivery and to elucidate the molecular mechanisms involved.

    METHODS: Day-1 post-delivery female rats were given MPE (100, 250 and 500 mg/kg/day) orally for seven consecutive days. A day after the last treatment (day-8), rats were sacrificed and uteri were harvested and subjected for ex-vivo contraction study using organ bath followed by protein expression and distribution study by Western blotting and immunohistochemistry techniques, respectively. The proteins of interest include calmodulin-CaM, myosin light chain kinase-MLCK, sarcoplasmic reticulum Ca2+-ATPase (SERCA), G-protein α and β (Gα and Gβ), inositol-triphosphate 3-kinase (IP3K), oxytocin receptor-OTR, prostaglandin (PGF)2α receptor-PGFR, muscarinic receptor-MAChR and estrogen receptor (ER) isoforms α and β. Levels of estradiol and progesterone in serum were determined by enzyme-linked immunoassay (ELISA).

    RESULTS: Ex-vivo contraction study revealed the force of uterine contraction increased with increasing doses of MPE. In addition, expression of CaM, MLCK, SERCA, Gα, Gβ, IP3K, OTR, PGF2α, MAChR, Erα and ERβ in the uterus increased with increasing doses of MPE. Serum analysis indicate that estradiol levels decreased while progesterone levels remained low at day-8 post-partum in rats receiving 250 and 500 mg/kg/day MPE.

    CONCLUSIONS: These findings support the claims that MPE help to firm the uterus and pave the way for its use as a uterotonic agent after delivery.

    Matched MeSH terms: Rats, Sprague-Dawley
  12. Muhammad H, Maslan SF, Md Saad WM, Thani NSIA, Ibnu Rasid EN, Mahomoodally MF, et al.
    Food Chem Toxicol, 2019 Sep;131:110538.
    PMID: 31152790 DOI: 10.1016/j.fct.2019.05.046
    Dioscorea hispida var. daemona (Roxb) Prain & Burkill (DH), also known a tropical yam or intoxicating yam is a bitter wild tuber which is consumed as a staple food and traditionally used as a remedy in Malaysia. However, DH is also notorious for its intoxicating effects and there is currently a dearth of study of possible effects of DH on liver and placental tissues and hence its safe consumption warrants in-depth investigation. This study was therefore designed to investigate into the effect of DH on liver and placenta of pregnant rat via histopathological examination. Thirty pregnant Sprague-Dawley rats were randomly divided into five groups consisting of a control (distilled water) and four DH aqueous extract groups (250, 500, 1000 and 2000 mg/kg body weight). The extracts were administered via oral gavage daily throughout the study and animals were sacrificed on day 21. Paraffin-embedded, hematoxylin and eosin stained sections of placenta and liver were examined. Significant changes (p 
    Matched MeSH terms: Rats, Sprague-Dawley
  13. Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF
    Carbohydr Polym, 2014 Dec 19;114:312-320.
    PMID: 25263896 DOI: 10.1016/j.carbpol.2014.08.025
    Natural polymer-based hydrogels are of interest to health care professionals as wound dressings owing to their ability to absorb exudates and provide hydration for healing. The aims of this study were to develop and characterize bacterial cellulose/acrylic acid (BC/AA) hydrogels synthesized by electron beam irradiation and investigate its wound healing potential in an animal model. The BC/AA hydrogels were characterized by SEM, tensile strength, water absorptivity, and water vapor transmission rate (WVTR). The cytotoxicity of the hydrogels was investigated in L929 cells. Skin irritation and wound healing properties were evaluated in Sprague-Dawley rats. BC/AA hydrogels had a macroporous network structure, high swelling ratio (4000-6000% at 24h), and high WVTR (2175-2280 g/m(2)/day). The hydrogels were non-toxic in the cell viability assay. In vivo experiments indicated that hydrogels promoted faster wound-healing, enhanced epithelialization, and accelerated fibroblast proliferation compared to that in the control group. These results suggest that BC/AA hydrogels are promising materials for burn dressings.
    Matched MeSH terms: Rats
  14. Taha H, Arya A, Paydar M, Looi CY, Wong WF, Vasudeva Murthy CR, et al.
    Food Chem Toxicol, 2014 Apr;66:295-306.
    PMID: 24518542 DOI: 10.1016/j.fct.2014.01.054
    The current study aimed to ascertain the antidiabetic potential of Pseuduvaria monticola bark methanolic extract (PMm) using in vitro mechanistic study models. In particular, the study determined the effect of PMm on cellular viability, 2-NBDG glucose uptake, insulin secretion, and NF-κB translocation in mouse pancreatic insulinoma cells (NIT-1). Furthermore, in vivo acute toxicity and antidiabetic studies were performed using streptozotocin (STZ)-induced type 1 and STZ-nicotinamide-induced type 2 diabetic rat models to evaluate various biochemical parameters and markers of oxidative stress and pro-inflammatory cytokines. Five isoquinoline alkaloids and three phenolic compounds were tentatively identified in the PMm by LC/MS Triple TOF. The study results showed that PMm is non-toxic to NIT-1 cells and significantly increased the glucose uptake and insulin secretion without affecting the translocation of NF-κB. Moreover, the non-toxic effects of PMm were confirmed through an in vivo acute toxicity study, which revealed that the serum insulin and C-peptide levels were significantly upregulated in type 2 diabetic rats and that no significant changes were observed in type 1 diabetic rats. Similarly, PMm was found to downregulate the levels of oxidative stress and pro-inflammatory cytokines in type 2 diabetic rats by alleviating hyperglycemia. Therefore, we conclude that PMm may be developed as an antidiabetic agent for the treatment of type 2 diabetes-associated conditions.
    Matched MeSH terms: Rats
  15. Suwanprinya L, Morales NP, Sanvarinda P, Dieng H, Okabayashi T, Morales Vargas RE
    Jpn J Infect Dis, 2017 07 24;70(4):383-387.
    PMID: 28003593 DOI: 10.7883/yoken.JJID.2016.236
    Encephalitis has been described worldwide as a severe complication in patients infected by dengue virus. Reactive oxygen species (ROS) production is a key mechanism involved in the neuronal damage caused by viral encephalitis. In the present study, the capability of dengue virus serotypes 2 (DENV2) and DENV4 to induce ROS production was investigated in a rat microglial cell line, HAPI cells. The cells were infected with DENV2 and DENV4 at a multiplicity of infection of 0.1 for a 2-h adsorption period. Japanese encephalitis virus (JEV) was used as the reference. DENV2- and DENV4-induced microglial activation and significantly increased ROS production corresponded to decreased cell viability. The activity of DENV4 was significantly higher than the activities of DENV2 and JEV at 48 and 72 h post infection. DENV4 partly induced ROS production via an iron-induced Fenton reaction, as demonstrated by the treatment with an iron chelator, deferiprone. Despite the induction of increased inducible nitric oxide synthase expression and nitric oxide (NO) production by JEV, DENV2, and DENV4 did not induce NO production, suggesting the activation of different pathways in response to infections by different viruses. In conclusion, DENV2 and DENV4 have the capability to induce ROS production and activate microglia, which have been reported as the key components of neuronal damage.
    Matched MeSH terms: Rats
  16. Shamaan NA, Wan Ngah WZ, Ibrahim R, Jarien Z, Top AG, Abdul Kadir K
    Biochem Pharmacol, 1993 Apr 06;45(7):1517-9.
    PMID: 8471073
    The effect of tocotrienol on the activities of glutathione S-transferases (GSTs), glutathione reductase (GR) and glutathione peroxidase (GPx) in rats given 2-acetylaminofluorene (AAF) was investigated over a 20 week period. Liver and kidney GST and liver GR activities were significantly increased after AAF administration. Kidney GPx activities were significantly affected; activity assayed with cumene hydroperoxide (cu-OOH) was increased but activity assayed with H2O2 was reduced. Supplementation of the diet with tocotrienol in the AAF-treated rats reduced the increase in enzyme activities. Tocotrienol on its own had no effect on the enzyme activities.
    Matched MeSH terms: Rats
  17. Tan JW, Israf DA, Md Hashim NF, Cheah YK, Harith HH, Shaari K, et al.
    Biochem Pharmacol, 2017 Nov 15;144:132-148.
    PMID: 28813645 DOI: 10.1016/j.bcp.2017.08.010
    Mast cells play a central role in the pathogenesis of allergic reaction. Activation of mast cells by antigens is strictly dependent on the influx of extracellular calcium that involves a complex interaction between signalling molecules located within the cells. We have previously reported that tHGA, an active compound originally isolated from a local shrub known as Melicope ptelefolia, prevented IgE-mediated mast cell activation and passive systemic anaphylaxis by suppressing the release of interleukin-4 (IL-4) and tumour necrosis factor (TNF)-α from activated rat basophilic leukaemia (RBL)-2H3 cells. However, the mechanism of action (MOA) as well as the molecular target underlying the mast cell stabilising effect of tHGA has not been previously investigated. In this study, DNP-IgE-sensitised RBL-2H3 cells were pre-treated with tHGA before challenged with DNP-BSA. To dissect the MOA of tHGA in IgE-mediated mast cell activation, the effect of tHGA on the transcription of IL-4 and TNF-α mRNA was determined using Real Time-Polymerase Chain Reaction (qPCR) followed by Calcium Influx Assay to confirm the involvement of calcium in the activation of mast cells. The protein lysates were analysed by using Western Blot to determine the effect of tHGA on various important signalling molecules in the LAT-PLCγ-MAPK and PI3K-NFκB pathways. In order to identify the molecular target of tHGA in IgE-mediated mast cell activation, the LAT and LAT2 genes in RBL-2H3 cells were knocked-down by using RNA interference to establish a LAT/LAT2 competition model. The results showed that tHGA inhibited the transcription of IL-4 and TNF-α as a result of the suppression of calcium influx in activated RBL-2H3 cells. The results from Western Blot revealed that tHGA primarily inhibited the LAT-PLCγ-MAPK pathway with partial inhibition on the PI3K-p65 pathway without affecting Syk. The results from RNAi further demonstrated that tHGA failed to inhibit the release of mediators associated with mast cell degranulation under the LAT/LAT2 competition model in the absence of LAT. Collectively, this study concluded that the molecular target of tHGA could be LAT and may provide a basis for the development of a mast cell stabiliser which targets LAT.
    Matched MeSH terms: Rats
  18. Jubaidi FF, Mathialagan RD, Noor MM, Taib IS, Budin SB
    Syst Biol Reprod Med, 2019 Jun;65(3):194-204.
    PMID: 30773941 DOI: 10.1080/19396368.2019.1573274
    Monosodium glutamate (MSG) is widely used in food preparation industry and has been consumed regularly. Previous studies had reported on effects of MSG when given at extremely high dosages, the results are not applicable to human equivalent intake. Therefore, the present study aimed to evaluate the effect of MSG on sperm quality and changes in reproductive organs of adult male rats when taken at average human daily intake (ADI). Twenty-four adult male rats were randomly assigned into three groups; NC (Normal control), MSG60 and MSG120 where MSG was given orally at 60 mg/kg and 120 mg/kg to each respective group. All treatments were conducted for 28 consecutive days. MSG at estimated ADI of 120 mg/kg body weight resulted in a significant drop in sperm quality (p
    Matched MeSH terms: Rats
  19. Madzuki IN, Lau SF, Abdullah R, Mohd Ishak NI, Mohamed S
    Phytother Res, 2019 Jul;33(7):1784-1793.
    PMID: 31033070 DOI: 10.1002/ptr.6366
    Vernonia amygdalina (VA) is a medicinal tropical herb for diabetes and malaria and believed to be beneficial for joint pains. The antiosteorthritis effects of VA leaf in cartilage explant assays and on postmenopausal osteoarthritis (OA) rat model were investigated. The VA reduced the proteoglycan and nitric oxide release from the cartilage explants with interleukin 1β (IL-1β) stimulation. For the preclinical investigation, ovariectomized (OVX) female rats were grouped (n = 8) into nontreated OA, OA + diclofenac (5 mg/kg), OA + VA extract (150 and 300 mg/kg), and healthy sham control. Monosodium iodoacetate was injected into the knee joints to accelerate OA development. After 8 weeks, the macroscopic, microscopic, and histological images showed that the OA rats treated with VA 300 mg/kg and diclofenac had significantly reduced cartilage erosions and osteophytes unlike the control OA rats. The extract significantly down-regulated the inflammatory prostaglandin E2, nuclear factor κβ, IL-1β, ADAMTS-5, collagen type 10α1, and caspase3 in the OVX-OA rats. It up-regulated the anti-inflammatory IL-10 and collagen type 2α1 mRNA expressions, besides reducing serum collagenases (MMP-3 and MMP-13) and collagen type II degradation biomarker (CTX-II) levels in these rats. The VA (containing various caffeoyl-quinic acids, flavanone-O-rutinoside, luteolin, apigenin derivative and vernonioside D) suppressed inflammation, pain, collagenases as well as cartilage degradation, and improved cartilage matrix synthesis to prevent OA.
    Matched MeSH terms: Rats
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links