Displaying publications 241 - 260 of 264 in total

Abstract:
Sort:
  1. Abu Bakar MH, Hairunisa N, Zaman Huri H
    Clin Exp Med, 2018 Aug;18(3):373-382.
    PMID: 29550985 DOI: 10.1007/s10238-018-0495-4
    Altered mitochondrial DNA (mtDNA) is the most common denominator to numerous metabolic diseases. The present study sought to investigate the correlation between mtDNA content in lymphocytes and associated clinical risk factors for impaired fasting glucose (IFG). We included 23 healthy control and 42 IFG participants in this cross-sectional study. The measurements of mtDNA content in lymphocytes and pro-inflammatory markers derived from both normal and diseased individuals were quantified. Spearman partial correlation and multivariate statistical analyses were employed to evaluate the association between mtDNA content and other metabolic covariates in IFG. Reduced mtDNA content was observed in the IFG group with microvascular complications than those without complications. The IFG patients with lowest median of mtDNA content had considerably elevated hyperglycemia, insulin resistance and inflammation. The adjusted partial correlation analysis showed that mtDNA content was positively correlated with HDL-cholesterol and IL-10 (P 
    Matched MeSH terms: DNA, Mitochondrial/blood*; DNA, Mitochondrial/immunology
  2. Bhattacharjee M, Venugopal B, Wong KT, Goto YI, Bhattacharjee MB
    Ultrastruct Pathol, 2006 Nov-Dec;30(6):481-7.
    PMID: 17183762
    The authors describe the case of a 50-year-old man with chronic progressive external ophthalmoplegia (CPEO), diabetes mellitus (DM), and coronary artery disease. The patient had no cardiac conduction abnormalities. During coronary artery bypass surgery, his heart and two skeletal muscles were biopsied. All three muscles showed ragged red fibers. The heart muscle showed significant glycogen accumulation. Analysis of mitochondrial DNA (mtDNA) showed a 5019-base-pair deletion, with no duplications. There were morphologically abnormal mitochondria in all 3 muscles, with clinically apparent difference in preservation of function. The combination of diabetes mellitus and mtDNA deletion is fortuitous, as they can be causally linked. The cardiac pathology allows speculation about the possible adaptive processes that may occur in the heart in DM. There are few reported cases with CPEO and excess glycogen in the heart. Most show deposition of fat and poorer clinical outcomes as compared to those with glycogen deposition. This observation may lend support to the hypothesis that in the myocardium, adaptive responses are mediated via changes in glucose handling, whereas alterations in fat metabolism likely represent maladaptation.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  3. Kavitha R, Nazni WA, Tan TC, Lee HL, Isa MN, Azirun MS
    Malays J Pathol, 2012 Dec;34(2):127-32.
    PMID: 23424775 MyJurnal
    Forensic entomology applies knowledge about insects associated with decedent in crime scene investigation. It is possible to calculate a minimum postmortem interval (PMI) by determining the age and species of the oldest blow fly larvae feeding on decedent. This study was conducted in Malaysia to identify maggot specimens collected during crime scene investigations. The usefulness of the molecular and morphological approach in species identifications was evaluated in 10 morphologically identified blow fly larvae sampled from 10 different crime scenes in Malaysia. The molecular identification method involved the sequencing of a total length of 2.2 kilo base pairs encompassing the 'barcode' fragments of the mitochondrial cytochrome oxidase I (COI), cytochrome oxidase II (COII) and t-RNA leucine genes. Phylogenetic analyses confirmed the presence of Chrysomya megacephala, Chrysomya rufifacies and Chrysomya nigripes. In addition, one unidentified blow fly species was found based on phylogenetic tree analysis.
    Matched MeSH terms: DNA, Mitochondrial/analysis
  4. Radzak S, Khair Z, Ahmad F, Idris Z, Yusoff A
    Turk Neurosurg, 2021;31(1):99-106.
    PMID: 33491172 DOI: 10.5137/1019-5149.JTN.27893-20.4
    AIM: To determine the mitochondrial microsatellite instability (mtMSI) status in a series of Malaysian patients with brain tumors. Furthermore, we analyzed whether the mtMSI status is associated with the clinicopathological features of the patients.

    MATERIAL AND METHODS: Forty fresh frozen tumor tissues along with blood samples of brain tumor patients were analyzed for mtMSI by PCR amplification of genomic DNAs, and the amplicons were directly sequenced in both directions using Sanger sequencing.

    RESULTS: Microsatellite analysis revealed that 20% (8 out of 40) of the tumors were mtMSI positive with a total of 8 mtMSI changes. All mtMSI markers were detected in D310 and D16184 of the D-loop region. Additionally, no significant association was observed between mtMSI status and clinicopathological features.

    CONCLUSION: The variations, specifically the mtMSI, suggest that the mitochondrial DNA (mtDNA) can be targeted for genomic alteration in brain tumors. Therefore, the specific role of mtDNA alteration in brain tumor development and prognosis requires further investigation.

    Matched MeSH terms: DNA, Mitochondrial/genetics*
  5. Tan SH, Aris EM, Surin J, Omar B, Kurahashi H, Mohamed Z
    Trop Biomed, 2009 Aug;26(2):173-81.
    PMID: 19901904
    The mitochondiral DNA region encompassing the cytochrome oxidase subunit I (COI) and cytochrome oxidase subunit II (COII) genes of two Malaysian blow fly species, Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) were studied. This region, which spans 2303bp and includes the COI, tRNA leucine and partial COII was sequenced from adult fly and larval specimens, and compared. Intraspecific variations were observed at 0.26% for Ch. megacephala and 0.17% for Ch. rufifacies, while sequence divergence between the two species was recorded at a minimum of 141 out of 2303 sites (6.12%). Results obtained in this study are comparable to published data, and thus support the use of DNA sequence to facilitate and complement morphology-based species identification.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  6. Coppard SE, Jessop H, Lessios HA
    Sci Rep, 2021 Aug 16;11(1):16568.
    PMID: 34400682 DOI: 10.1038/s41598-021-95872-0
    The sea urchins Echinothrix calamaris and Echinothrix diadema have sympatric distributions throughout the Indo-Pacific. Diverse colour variation is reported in both species. To reconstruct the phylogeny of the genus and assess gene flow across the Indo-Pacific we sequenced mitochondrial 16S rDNA, ATPase-6, and ATPase-8, and nuclear 28S rDNA and the Calpain-7 intron. Our analyses revealed that E. diadema formed a single trans-Indo-Pacific clade, but E. calamaris contained three discrete clades. One clade was endemic to the Red Sea and the Gulf of Oman. A second clade occurred from Malaysia in the West to Moorea in the East. A third clade of E. calamaris was distributed across the entire Indo-Pacific biogeographic region. A fossil calibrated phylogeny revealed that the ancestor of E. diadema diverged from the ancestor of E. calamaris ~ 16.8 million years ago (Ma), and that the ancestor of the trans-Indo-Pacific clade and Red Sea and Gulf of Oman clade split from the western and central Pacific clade ~ 9.8 Ma. Time since divergence and genetic distances suggested species level differentiation among clades of E. calamaris. Colour variation was extensive in E. calamaris, but not clade or locality specific. There was little colour polymorphism in E. diadema.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  7. Lim HC, Sheldon FH
    Mol Ecol, 2011 Aug;20(16):3414-38.
    PMID: 21777318 DOI: 10.1111/j.1365-294X.2011.05190.x
    Sundaland has a dynamic geographic history because its landmasses were periodically interconnected when sea levels fell during glacial periods. Superimposed on this geographic dynamism were environmental changes related to climatic oscillations. To investigate how tropical taxa responded to such changes, we studied the divergence and demographic history of two co-distributed rainforest passerine species, Arachnothera longirostra and Malacocincla malaccensis. We sampled birds primarily from Borneo and the Malay Peninsula, which straddle the now-submerged Sunda shelf, and analysed multilocus DNA data with a variety of coalescent and gene genealogy methods. Cross-shelf divergence in both species occurred well before the last glacial maximum, i.e., before the most recent land connection. However, post-divergence gene flow occurred, and it was more pronounced in A. longirostra (a highly vagile nectarivore/insectivore) than in M. malaccensis (an understory insectivore). Despite current habitat continuity on Borneo, the population of M. malaccensis in northeastern Borneo is substantially divergent from that on the rest of the island. The NE population experienced dramatic demographic fluctuations, probably because of competition with the other population, which expanded from western Borneo after the mid-Pleistocene. In contrast, the Borneo population of A. longirostra has little structure and appears to have experienced demographic expansion 16 kya, long after it had diverged from the Malay Peninsula population (630-690 kya). Malay Peninsula populations of both species have remained relatively stable. Overall, the most recent glacial period was not the chief determinant of the evolutionary dynamics of our study species, and in this respect, they are different from temperate species.
    Matched MeSH terms: DNA, Mitochondrial
  8. Tan MP, Jamsari AF, Siti Azizah MN
    PLoS One, 2012;7(12):e52089.
    PMID: 23284881 DOI: 10.1371/journal.pone.0052089
    A phylogeographic study of an economically important freshwater fish, the striped snakehead, Channa striata in Sundaland was carried out using data from mtDNA ND5 gene target to elucidate genetic patterning. Templates obtained from a total of 280 individuals representing 24 sampling sites revealed 27 putative haplotypes. Three distinct genetic lineages were apparent; 1)northwest Peninsular Malaysia, 2)southern Peninsular, east Peninsular, Sumatra and SW (western Sarawak) and 3) central west Peninsular and Malaysian Borneo (except SW). Genetic structuring between lineages showed a significant signature of natural geographical barriers that have been acting as effective dividers between these populations. However, genetic propinquity between the SW and southern Peninsular and east Peninsular Malaysia populations was taken as evidence of ancient river connectivity between these regions during the Pleistocene epoch. Alternatively, close genetic relationship between central west Peninsular Malaysia and Malaysian Borneo populations implied anthropogenic activities. Further, haplotype sharing between the east Peninsular Malaysia and Sumatra populations revealed extraordinary migration ability of C. striata (>500 km) through ancient connectivity. These results provide interesting insights into the historical and contemporary landscape arrangement in shaping genetic patterns of freshwater species in Sundaland.
    Matched MeSH terms: DNA, Mitochondrial
  9. Norhalifah HK, Syaza FH, Chambers GK, Edinur HA
    Gene, 2016 Jul 15;586(1):129-35.
    PMID: 27060406 DOI: 10.1016/j.gene.2016.04.008
    This article explores the genetic history of the various sub-populations currently living in Peninsular Malaysia. This region has received multiple waves of migrants like the Orang Asli in prehistoric times and the Chinese, Indians, Europeans and Arabs during historic times. There are three highly distinct lineages that make up the Orang Asli; Semang, Senoi and Proto-Malays. The Semang, who have 'Negrito' characteristics, represent the first human settlers in Peninsular Malaysia arriving from about 50,000ya. The Senoi later migrated from Indochina and are a mix between an Asian Neolithic population and the Semang. These Asian genomes probably came in before Austroasiatic languages arrived between 5000 and 4000years ago. Semang and Senoi both now speak Austro-Asiatic languages indicative of cultural diffusion from Senoi to Semang. In contrast, the Proto-Malays who came last to the southern part of this region speak Austronesian language and are Austronesians with some Negrito admixture. It is from this group that the contemporary Malays emerged. Here we provide an overview of the best available genetic evidences (single nucleotide polymorphisms, mitochondrial DNA, Y-chromosome, blood groups, human platelet antigen, human leukocyte antigen, human neutrophil antigen and killer-cell immunoglobulin-like receptor) supporting the complex genetic history of Peninsular Malaysia. Large scale sampling and high throughput genetic screening programmes such as those using genome-wide single nucleotide polymorphism analyses have provided insights into various ancestral and admixture genetic fractions in this region. Given the now extensive admixture present in the contemporary descendants of ancient sub-populations in Peninsular Malaysia, improved reconstruction of human migration history in this region will require new evidence from ancient DNA in well-preserved skeletons. All other aspects of the highly diverse and complex genetic makeup in Peninsular Malaysia should be considered carefully for genetic mapping of disease loci and policy formation by health authorities.
    Matched MeSH terms: DNA, Mitochondrial
  10. Harrisson K, Pavlova A, Gan HM, Lee YP, Austin CM, Sunnucks P
    Heredity (Edinb), 2016 Jun;116(6):506-15.
    PMID: 26883183 DOI: 10.1038/hdy.2016.8
    Climatic differences across a taxon's range may be associated with specific bioenergetic demands and may result in genetics-based metabolic adaptation, particularly in aquatic ectothermic organisms that rely on heat exchange with the environment to regulate key physiological processes. Extending down the east coast of Australia, the Great Dividing Range (GDR) has a strong influence on climate and the evolutionary history of freshwater fish species. Despite the GDR acting as a strong contemporary barrier to fish movement, many species, and species with shared ancestries, are found on both sides of the GDR, indicative of historical dispersal events. We sequenced complete mitogenomes from the four extant species of the freshwater cod genus Maccullochella, two of which occur on the semi-arid, inland side of the GDR, and two on the mesic coastal side. We constructed a dated phylogeny and explored the relative influences of purifying and positive selection in the evolution of mitogenome divergence among species. Results supported mid- to late-Pleistocene divergence of Maccullochella across the GDR (220-710 thousand years ago), bringing forward previously reported dates. Against a background of pervasive purifying selection, we detected potentially functionally relevant fixed amino acid differences across the GDR. Although many amino acid differences between inland and coastal species may have become fixed under relaxed purifying selection in coastal environments rather than positive selection, there was evidence of episodic positive selection acting on specific codons in the Mary River coastal lineage, which has consistently experienced the warmest and least extreme climate in the genus.
    Matched MeSH terms: DNA, Mitochondrial
  11. Brandt JR, van Coeverden de Groot PJ, Witt KE, Engelbrektsson PK, Helgen KM, Malhi RS, et al.
    J Hered, 2018 06 27;109(5):553-565.
    PMID: 29684146 DOI: 10.1093/jhered/esy019
    The Sumatran rhinoceros (Dicerorhinus sumatrensis), once widespread across Southeast Asia, now consists of as few as 30 individuals within Sumatra and Borneo. To aid in conservation planning, we sequenced 218 bp of control region mitochondrial (mt) DNA, identifying 17 distinct mitochondrial haplotypes across modern (N = 13) and museum (N = 26) samples. Museum specimens from Laos and Myanmar had divergent mtDNA, consistent with the placement of western mainland rhinos into the distinct subspecies D. s. lasiotis (presumed extinct). Haplotypes from Bornean rhinos were highly diverse, but dissimilar from those of other regions, supporting the distinctiveness of the subspecies D. s. harrissoni. Rhinos from Sumatra and Peninsular Malaysia shared mtDNA haplotypes, consistent with their traditional placement into a single subspecies D. s sumatrensis. Modern samples of D. s. sumatrensis were genotyped at 18 microsatellite loci. Rhinos within Sumatra formed 2 sub-populations, likely separated by the Barisan Mountains, though with only modest genetic differentiation between them. There are so few remaining Sumatran rhinoceros that separate management strategies for subspecies or subpopulations may not be viable, while each surviving rhino pedigree is likely to retain alleles found in no other individuals. Given the low population size and low reproductive potential of Sumatran rhinos, rapid genetic erosion is inevitable, though an under-appreciated concern is the potential for fixation of harmful genetic variants. Both concerns underscore 2 overriding priorities for the species: 1) translocation of wild rhinos to ex situ facilities, and 2) collection and storage of gametes and cell lines from every surviving captive and wild individual.
    Matched MeSH terms: DNA, Mitochondrial
  12. Sun Q, Wang K, Yoshimura A, Doi K
    Theor Appl Genet, 2002 Jun;104(8):1335-1345.
    PMID: 12582589
    The genetic differentiation of nuclear, mitochondrial (mt) and chloroplast (cp) genomes was investigated by Southern and PCR analysis using 75 varieties of cultivated rice ( Oryza sativa L.) and 118 strains of common wild rice (CWR, Oryza rufipogon Griff.) from ten countries of Asia. The distinguishing differences between the Indica and Japonica cultivars were detected both in the nuclear genome and the cytoplasmic genome, confirming that the Indica-Japonica differentiation is of major importance for the three different classes of genome in cultivated rice. This differentiation was also detected in common wild rice with some differences among the genome compartments and the various regions. For nuclear DNA variation, both Indica-like and Japonica-like types were observed in the Chinese CWR, with the latter more-frequent than the former. No Japonica-like type was found in South Asia, and only two strains of the Japonica-like type were detected in Southeast Asia, thus the Indica-like type is the major type among South and Southeast Asian CWR. For mtDNA, only a few strains of the Japonica-like type were detected in CWR. For cpDNA, the Japonica type was predominant among the CWR strains from China, Bangladesh and Burma, while the Indica type was predominant among the CWR strains from Thailand, Malaysia, Cambodia and Sri Lanka, and both types were found in similar frequencies among the Indian CWR. Altogether, however, the degree of Indica-Japonica differentiation in common wild rice was much-less important than that in cultivated rice. Cluster analyses for nuclear and mitochondrial DNA variation revealed that some CWR strains showed large genetic distances from cultivated rice and formed clusters distinct from cultivated rice. Coincidence in the genetic differentiation between the three different classes of genome was much higher in cultivated rice than in CWR. Among the 75 cultivars, about 3/4 entries were "homoeotype" showing congruent results for nuclear, mt and cpDNA regarding the Indica-Japonica differentiation. In CWR, the proportions of homoeotypes were 5.7%, 15% and 48.8% in China, South Asia and Southeast Asia, respectively. Based on the average genetic distance among all the strains of CWR and cultivated rice for nuclear and mitochondrial genomes, the variability of the nuclear genome was found to be higher than that of the mitochondrial genome. The global pattern based on all genomes shows much-more diversification in CWR than that in cultivated rice.
    Matched MeSH terms: DNA, Mitochondrial
  13. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: DNA, Mitochondrial
  14. Kamarudin KR, Rehan MM
    Trop Life Sci Res, 2015 Apr;26(1):87-99.
    PMID: 26868593 MyJurnal
    This preliminary study aimed to identify a commercial gamat species, Stichopus horrens Selenka, 1867, and a timun laut species, Holothuria (Mertensiothuria) leucospilota (Brandt, 1835), from Pangkor Island, Perak, Malaysia, employing morphological techniques based on the shape of the ossicles and molecular techniques based on the cytochrome c oxidase I (COI) mitochondrial DNA (mtDNA) gene. In Malaysia, a gamat is defined as a sea cucumber species of the family Stichopodidae with medicinal value, and timun laut refers to non-gamat species. S. horrens is very popular on Pangkor Island as a main ingredient in the traditional production of air gamat and minyak gamat, while H. leucospilota is the most abundant species in Malaysia. In contrast to previous studies, internal body parts (the respiratory tree and gastrointestine) were examined in this study to obtain better inferences based on morphology. The results showed that there were no ossicles present in the gastrointestine of H. leucospilota, and this characteristic is suggested as a unique diagnostic marker for the timun laut species. In addition, the presence of Y-shaped rods in the respiratory tree of S. horrens subsequently supported the potential to use internal body parts to identify the gamat species. Phylogenetic analysis of the COI mtDNA gene of the sea cucumber specimens using the neighbour-joining method and maximum likelihood methods further confirmed the species status of H. leucospilota and S. horrens from Pangkor Island, Perak, Malaysia. The COI mtDNA gene sequences were registered with GenBank, National Center for Biotechnology Information (NCBI), US National Library of Medicine (GenBank accession no.: KC405565-KC405568). Although additional specimens from various localities will be required to produce more conclusive results, the current findings provide better insight into the importance of complementary approaches involving morphological and molecular techniques in the identification of the two Malaysian sea cucumber species.
    Matched MeSH terms: DNA, Mitochondrial
  15. Brandon-Mong GJ, Ketzis JK, Choy JS, Boonroumkaew P, Tooba M, Sawangjaroen N, et al.
    Trop Biomed, 2018 Dec 01;35(4):1131-1139.
    PMID: 33601860
    Trichuris trichiura, the whipworm of humans, is one of the most prevalent soiltransmitted helminths (STH) reported worldwide. According to a recent study, out of 289 STH studies in Southeast Asia, only three studies used molecular methods. Hence, the genetic assemblages of Trichuris in Southeast Asia are poorly understood. In this study, we used partial mitochondrial DNA (cytochrome c oxidase subunit 1 or COI) sequences for analysis. Trichuris grouped in a same clade with different hosts indicate the potential of cross infection between hosts. Based on COI, the adult Trichuris isolated from a Malaysian patient was most closely related to Trichuris isolated from Papio anubis (olive baboons) from the USA. The Trichuris isolated from the dog from Malaysia was genetically similar to a Trichuris species isolated from Macaca silenus (lion-tailed macaque) from Czech Republic. Both the human and dog isolated Trichuris grouped in clades with different hosts indicating the potential of cross infection between hosts. Specific PCR primers based on the partial COI of T. trichiura isolated from African green monkey and T. serrata were designed and successfully amplified using multiplex PCR of the pooled DNA samples. Our results suggest a complex parasite-host relationship, and support the theory of cross infection of Trichuris between humans and non-human primates as suggested in previous publications.
    Matched MeSH terms: DNA, Mitochondrial
  16. Chandrika, M., Maimunah, M., Zainon, M.N., Son, R.
    MyJurnal
    Legislation concerning the safety assessment and labelling of foodstuffs has been implemented in many countries. Consequential to a number of cases of food adulteration reported globally, a fast and reliable detection method for the food traceability is required in ensuring effective implementation of food legislation in a country. In this study, PCR-RFLP technique based on cyt b gene has been tested for its suitability for these purposes. This method combines the use of a pair of universal primer that amplifies a 359 bp fragment on the cyt b gene from meat muscle DNA and restriction enzyme analysis. Analysis of experimental beef frankfurter, minced beef, pork frankfurter and pork cocktail samples demonstrated the suitability of the assay for the detection of the beef (Bos taurus) and pork (Sus scrofa), but not applicable for some processed food, particularly detection of mackerel (Rasterelliger brachysoma), sardine (Saedinella Fimbriata) and tuna (Thunnus tonggol) origin in canned food. Commercial frauds through species mislabelling or misdescribed were not detected. The assay is demonstrated applicable for routine analysis of meat traceability of foodstuffs and legislation purposes, if sufficient availability of detectable mtDNA in the foodstuffs is ensured.
    Matched MeSH terms: DNA, Mitochondrial
  17. Koch K, Algar D, Schwenk K
    Ecol Evol, 2016 08;6(15):5321-32.
    PMID: 27551385 DOI: 10.1002/ece3.2261
    Endemic species on islands are highly susceptible to local extinction, in particular if they are exposed to invasive species. Invasive predators, such as feral cats, have been introduced to islands around the world, causing major losses in local biodiversity. In order to control and manage invasive species successfully, information about source populations and level of gene flow is essential. Here, we investigate the origin of feral cats of Hawaiian and Australian islands to verify their European ancestry and a potential pattern of isolation by distance. We analyzed the genetic structure and diversity of feral cats from eleven islands as well as samples from Malaysia and Europe using mitochondrial DNA (ND5 and ND6 regions) and microsatellite DNA data. Our results suggest an overall European origin of Hawaiian cats with no pattern of isolation by distance between Australian, Malaysian, and Hawaiian populations. Instead, we found low levels of genetic differentiation between samples from Tasman Island, Lana'i, Kaho'olawe, Cocos (Keeling) Island, and Asia. As these populations are separated by up to 10,000 kilometers, we assume an extensive passive dispersal event along global maritime trade routes in the beginning of the 19th century, connecting Australian, Asian, and Hawaiian islands. Thus, islands populations, which are characterized by low levels of current gene flow, represent valuable sources of information on historical, human-mediated global dispersal patterns of feral cats.
    Matched MeSH terms: DNA, Mitochondrial
  18. Ahmad Azlina, Berahim Zurairah, Sidek Mohamad Ros, Mokhtar Khairani Idah, Samsudin Abdul Rani
    MyJurnal
    Mitochondrial DNA (mtDNA) is a hereditary material located in mitochondria and is normally maternally inherited. Mutational analysis performed on mtDNA proved that the mutations are closely related with a number of genetic illnesses, besides being exploitable for forensic identification. Those findings imply the importance of mtDNA in the scientific field. MtDNA can be found in abundance in tooth dentin where it is kept protected by the enamel, the hardest outer part of the tooth. In this study, two techniques of mtDNA extraction were compared to determine the efficacy between the two techniques. Teeth used for the study was collected from Dental Clinic, Hospital Universiti Sains Malaysia. After the removal of tooth from the tooth socket of the patient, the tooth was kept at -20C until use. Later, pulp tissue and enamel was excised using dental bur and only the root dentin was utilized for the isolation of mtDNA by crushing it mechanically into powdered form. MtDNA was extracted using the two published methods, Pfeifer and Budowle and then subjected to spectrophotometry DNA quantification and purity, Polymerase chain reaction (PCR) amplification of hypervariable-two region of mtDNA, followed by DNA sequencing to analyze the reliability of the extraction techniques. In conclusion, both techniques proved to be efficient and capable for the extraction of mtDNA from tooth dentin.
    Matched MeSH terms: DNA, Mitochondrial
  19. Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A, Newton R, et al.
    Sci Adv, 2018 04;4(4):eaaq0392.
    PMID: 29740610 DOI: 10.1126/sciadv.aaq0392
    Donkeys and horses share a common ancestor dating back to about 4 million years ago. Although a high-quality genome assembly at the chromosomal level is available for the horse, current assemblies available for the donkey are limited to moderately sized scaffolds. The absence of a better-quality assembly for the donkey has hampered studies involving the characterization of patterns of genetic variation at the genome-wide scale. These range from the application of genomic tools to selective breeding and conservation to the more fundamental characterization of the genomic loci underlying speciation and domestication. We present a new high-quality donkey genome assembly obtained using the Chicago HiRise assembly technology, providing scaffolds of subchromosomal size. We make use of this new assembly to obtain more accurate measures of heterozygosity for equine species other than the horse, both genome-wide and locally, and to detect runs of homozygosity potentially pertaining to positive selection in domestic donkeys. Finally, this new assembly allowed us to identify fine-scale chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation.
    Matched MeSH terms: DNA, Mitochondrial
  20. Mohamed Yusoff AA, Zulfakhar FN, Mohd Khair SZN, Wan Abdullah WS, Abdullah JM, Idris Z
    Brain Tumor Res Treat, 2018 Apr;6(1):31-38.
    PMID: 29717568 DOI: 10.14791/btrt.2018.6.e5
    BACKGROUND: Mitochondria are major cellular sources of reactive oxygen species (ROS) generation which can induce mitochondrial DNA damage and lead to carcinogenesis. The mitochondrial 10398A>G alteration in NADH-dehydrogenase subunit 3 (ND3) can severely impair complex I, a key component of ROS production in the mitochondrial electron transport chain. Alteration in ND3 10398A>G has been reported to be linked with diverse neurodegenerative disorders and cancers. The aim of this study was to find out the association of mitochondrial ND3 10398A>G alteration in brain tumor of Malaysian patients.

    METHODS: Brain tumor tissues and corresponding blood specimens were obtained from 45 patients. The ND3 10398A>G alteration at target codon 114 was detected using the PCR-RFLP analysis and later was confirmed by DNA sequencing.

    RESULTS: Twenty-six (57.8%) patients showed ND3 10398A>G mutation in their tumor specimens, in which 26.9% of these mutations were heterozygous mutations. ND3 10398A>G mutation was not significantly correlated with age, gender, and histological tumor grade, however was found more frequently in intra-axial than in extra-axial tumors (62.5% vs. 46.2%, p<0.01).

    CONCLUSION: For the first time, we have been able to describe the occurrence of ND3 10398A>G mutations in a Malaysian brain tumor population. It can be concluded that mitochondrial ND3 10398A>G alteration is frequently present in brain tumors among Malaysian population and it shows an impact on the intra-axial tumors.

    Matched MeSH terms: DNA, Mitochondrial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links