Displaying publications 241 - 260 of 282 in total

Abstract:
Sort:
  1. Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD
    Sci Total Environ, 2023 Jan 15;856(Pt 2):159283.
    PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283
    Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
    Matched MeSH terms: Artificial Intelligence
  2. Allawi MF, Jaafar O, Mohamad Hamzah F, Abdullah SMS, El-Shafie A
    Environ Sci Pollut Res Int, 2018 May;25(14):13446-13469.
    PMID: 29616480 DOI: 10.1007/s11356-018-1867-8
    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.
    Matched MeSH terms: Artificial Intelligence
  3. Song Z, Zhang W, Jiang Q, Deng L, Du L, Mou W, et al.
    Int J Surg, 2023 Dec 01;109(12):3848-3860.
    PMID: 37988414 DOI: 10.1097/JS9.0000000000000862
    BACKGROUND: The early detection of high-grade prostate cancer (HGPCa) is of great importance. However, the current detection strategies result in a high rate of negative biopsies and high medical costs. In this study, the authors aimed to establish an Asian Prostate Cancer Artificial intelligence (APCA) score with no extra cost other than routine health check-ups to predict the risk of HGPCa.

    PATIENTS AND METHODS: A total of 7476 patients with routine health check-up data who underwent prostate biopsies from January 2008 to December 2021 in eight referral centres in Asia were screened. After data pre-processing and cleaning, 5037 patients and 117 features were analyzed. Seven AI-based algorithms were tested for feature selection and seven AI-based algorithms were tested for classification, with the best combination applied for model construction. The APAC score was established in the CH cohort and validated in a multi-centre cohort and in each validation cohort to evaluate its generalizability in different Asian regions. The performance of the models was evaluated using area under the receiver operating characteristic curve (ROC), calibration plot, and decision curve analyses.

    RESULTS: Eighteen features were involved in the APCA score predicting HGPCa, with some of these markers not previously used in prostate cancer diagnosis. The area under the curve (AUC) was 0.76 (95% CI:0.74-0.78) in the multi-centre validation cohort and the increment of AUC (APCA vs. PSA) was 0.16 (95% CI:0.13-0.20). The calibration plots yielded a high degree of coherence and the decision curve analysis yielded a higher net clinical benefit. Applying the APCA score could reduce unnecessary biopsies by 20.2% and 38.4%, at the risk of missing 5.0% and 10.0% of HGPCa cases in the multi-centre validation cohort, respectively.

    CONCLUSIONS: The APCA score based on routine health check-ups could reduce unnecessary prostate biopsies without additional examinations in Asian populations. Further prospective population-based studies are warranted to confirm these results.

    Matched MeSH terms: Artificial Intelligence
  4. Seriramulu VP, Suppiah S, Lee HH, Jang JH, Omar NF, Mohan SN, et al.
    Med J Malaysia, 2024 Jan;79(1):102-110.
    PMID: 38287765
    INTRODUCTION: Magnetic resonance spectroscopy (MRS) has an emerging role as a neuroimaging tool for the detection of biomarkers of Alzheimer's disease (AD). To date, MRS has been established as one of the diagnostic tools for various diseases such as breast cancer and fatty liver, as well as brain tumours. However, its utility in neurodegenerative diseases is still in the experimental stages. The potential role of the modality has not been fully explored, as there is diverse information regarding the aberrations in the brain metabolites caused by normal ageing versus neurodegenerative disorders.

    MATERIALS AND METHODS: A literature search was carried out to gather eligible studies from the following widely sourced electronic databases such as Scopus, PubMed and Google Scholar using the combination of the following keywords: AD, MRS, brain metabolites, deep learning (DL), machine learning (ML) and artificial intelligence (AI); having the aim of taking the readers through the advancements in the usage of MRS analysis and related AI applications for the detection of AD.

    RESULTS: We elaborate on the MRS data acquisition, processing, analysis, and interpretation techniques. Recommendation is made for MRS parameters that can obtain the best quality spectrum for fingerprinting the brain metabolomics composition in AD. Furthermore, we summarise ML and DL techniques that have been utilised to estimate the uncertainty in the machine-predicted metabolite content, as well as streamline the process of displaying results of metabolites derangement that occurs as part of ageing.

    CONCLUSION: MRS has a role as a non-invasive tool for the detection of brain metabolite biomarkers that indicate brain metabolic health, which can be integral in the management of AD.

    Matched MeSH terms: Artificial Intelligence
  5. Wang W, Zhao X, Jia Y, Xu J
    PLoS One, 2024;19(2):e0297578.
    PMID: 38319912 DOI: 10.1371/journal.pone.0297578
    The objectives are to improve the diagnostic efficiency and accuracy of epidemic pulmonary infectious diseases and to study the application of artificial intelligence (AI) in pulmonary infectious disease diagnosis and public health management. The computer tomography (CT) images of 200 patients with pulmonary infectious disease are collected and input into the AI-assisted diagnosis software based on the deep learning (DL) model, "UAI, pulmonary infectious disease intelligent auxiliary analysis system", for lesion detection. By analyzing the principles of convolutional neural networks (CNN) in deep learning (DL), the study selects the AlexNet model for the recognition and classification of pulmonary infection CT images. The software automatically detects the pneumonia lesions, marks them in batches, and calculates the lesion volume. The result shows that the CT manifestations of the patients are mainly involved in multiple lobes and density, the most common shadow is the ground-glass opacity. The detection rate of the manual method is 95.30%, the misdetection rate is 0.20% and missed diagnosis rate is 4.50%; the detection rate of the DL-based AI-assisted lesion method is 99.76%, the misdetection rate is 0.08%, and the missed diagnosis rate is 0.08%. Therefore, the proposed model can effectively identify pulmonary infectious disease lesions and provide relevant data information to objectively diagnose pulmonary infectious disease and manage public health.
    Matched MeSH terms: Artificial Intelligence
  6. Sachithanandan A, Lockman H, Azman RR, Tho LM, Ban EZ, Ramon V
    Med J Malaysia, 2024 Jan;79(1):9-14.
    PMID: 38287751
    INTRODUCTION: The poor prognosis of lung cancer has been largely attributed to the fact that most patients present with advanced stage disease. Although low dose computed tomography (LDCT) is presently considered the optimal imaging modality for lung cancer screening, its use has been hampered by cost and accessibility. One possible approach to facilitate lung cancer screening is to implement a risk-stratification step with chest radiography, given its ease of access and affordability. Furthermore, implementation of artificial-intelligence (AI) in chest radiography is expected to improve the detection of indeterminate pulmonary nodules, which may represent early lung cancer.

    MATERIALS AND METHODS: This consensus statement was formulated by a panel of five experts of primary care and specialist doctors. A lung cancer screening algorithm was proposed for implementation locally.

    RESULTS: In an earlier pilot project collaboration, AI-assisted chest radiography had been incorporated into lung cancer screening in the community. Preliminary experience in the pilot project suggests that the system is easy to use, affordable and scalable. Drawing from experience with the pilot project, a standardised lung cancer screening algorithm using AI in Malaysia was proposed. Requirements for such a screening programme, expected outcomes and limitations of AI-assisted chest radiography were also discussed.

    CONCLUSION: The combined strategy of AI-assisted chest radiography and complementary LDCT imaging has great potential in detecting early-stage lung cancer in a timely manner, and irrespective of risk status. The proposed screening algorithm provides a guide for clinicians in Malaysia to participate in screening efforts.

    Matched MeSH terms: Artificial Intelligence
  7. Maruthapillai V, Murugappan M
    PLoS One, 2016;11(2):e0149003.
    PMID: 26859884 DOI: 10.1371/journal.pone.0149003
    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.
    Matched MeSH terms: Artificial Intelligence
  8. Khataee HR, Ibrahim MY
    IET Nanobiotechnol, 2012 Sep;6(3):87-92.
    PMID: 22894532 DOI: 10.1049/iet-nbt.2011.0062
    Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.
    Matched MeSH terms: Artificial Intelligence
  9. Rasel MA, Abdul Kareem S, Kwan Z, Yong SS, Obaidellah U
    Comput Biol Med, 2024 Aug;178:108758.
    PMID: 38905895 DOI: 10.1016/j.compbiomed.2024.108758
    Melanoma, one of the deadliest types of skin cancer, accounts for thousands of fatalities globally. The bluish, blue-whitish, or blue-white veil (BWV) is a critical feature for diagnosing melanoma, yet research into detecting BWV in dermatological images is limited. This study utilizes a non-annotated skin lesion dataset, which is converted into an annotated dataset using a proposed imaging algorithm (color threshold techniques) on lesion patches based on color palettes. A Deep Convolutional Neural Network (DCNN) is designed and trained separately on three individual and combined dermoscopic datasets, using custom layers instead of standard activation function layers. The model is developed to categorize skin lesions based on the presence of BWV. The proposed DCNN demonstrates superior performance compared to the conventional BWV detection models across different datasets. The model achieves a testing accuracy of 85.71 % on the augmented PH2 dataset, 95.00 % on the augmented ISIC archive dataset, 95.05 % on the combined augmented (PH2+ISIC archive) dataset, and 90.00 % on the Derm7pt dataset. An explainable artificial intelligence (XAI) algorithm is subsequently applied to interpret the DCNN's decision-making process about the BWV detection. The proposed approach, coupled with XAI, significantly improves the detection of BWV in skin lesions, outperforming existing models and providing a robust tool for early melanoma diagnosis.
    Matched MeSH terms: Artificial Intelligence
  10. Jazayeri SMHM, Jamshidnezhad A
    Malays J Med Sci, 2019 Jan;26(1):5-14.
    PMID: 30914890 DOI: 10.21315/mjms2019.26.1.2
    The development of intelligent software in recent years has grown rapidly. Mobile health has become a field of interest as a tool for childcare, especially as a means for parents of children with diverse diseases and a resource to promote their health conditions. Current systematic review was conducted to survey the functionalities of available applications on the mobile platform to support pediatrics intelligent diagnosis and children healthcare. Results which met the inclusion criteria (such as patient monitoring, decision support, diagnosis support) were obtained, assessed and organised into a checklist. In this study, 379 potential apps were identified using the search feature in Apple App Store and Google Play Store. After careful consideration of the selected apps, only three (Google Play Store) and one (iTunes Store), fulfilled all the general inclusion criteria and special criteria, such as intelligence tools. The results showed that Artificial Intelligence (AI) was used minimally in diagnostic apps due to a limited amount of mobile hardware and software, such as the reliable programming of intelligent algorithms.
    Matched MeSH terms: Artificial Intelligence
  11. Al-batah MS, Isa NA, Klaib MF, Al-Betar MA
    Comput Math Methods Med, 2014;2014:181245.
    PMID: 24707316 DOI: 10.1155/2014/181245
    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.
    Matched MeSH terms: Artificial Intelligence*
  12. Tisa F, Davoody M, Abdul Raman AA, Daud WM
    PLoS One, 2015;10(4):e0119933.
    PMID: 25849556 DOI: 10.1371/journal.pone.0119933
    The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous goethite catalyst with homogeneous ferrous ion was analyzed as a function of three independent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial concentration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate models were developed using artificial neural networks to predict degradation percentage by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as inputs while phenol degradation and TOC removal were considered as outputs of the developed models. Satisfactory agreement was observed between testing data and the predicted values (R2Phenol = 0.9214 and R2TOC= 0.9082).
    Matched MeSH terms: Artificial Intelligence*
  13. Abunama T, Othman F, Ansari M, El-Shafie A
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3368-3381.
    PMID: 30511225 DOI: 10.1007/s11356-018-3749-5
    Leachate is one of the main surface water pollution sources in Selangor State (SS), Malaysia. The prediction of leachate amounts is elementary in sustainable waste management and leachate treatment processes, before discharging to surrounding environment. In developing countries, the accurate evaluation of leachate generation rates has often considered a challenge due to the lack of reliable data and high measurement costs. Leachate generation is related to several factors, including meteorological data, waste generation rates, and landfill design conditions. The high variations in these factors lead to complicating leachate modeling processes. This study aims at identifying the key elements contributing to leachate production and developing various AI-based models to predict leachate generation rates. These models included Artificial Neural Network (ANN)-Multi-linear perceptron (MLP) with single and double hidden layers, and support vector machine (SVM) regression time series algorithms. Various performance measures were applied to evaluate the developed model's accuracy. In this study, input optimization process showed that three inputs were acceptable for modeling the leachate generation rates, namely dumped waste quantity, rainfall level, and emanated gases. The initial performance analysis showed that ANN-MLP2 model-which applies two hidden layers-achieved the best performance, then followed by ANN-MLP1 model-which applies one hidden layer and three inputs-while SVM model gave the lowest performance. Ranges and frequency of relative error (RE%) also demonstrate that ANN-MLP models outperformed SVM models. Furthermore, low and peak flow criterion (LFC and PFC) assessment of leachate inflow values in ANN-MLP model with two hidden layers made more accurate values than other models. Since minimizing data collection and processing efforts as well as minimizing modeling complexity are critical in the hydrological modeling process, the applied input optimization process and the developed models in this study were able to provide a good performance in the modeling of leachate generation efficiently.
    Matched MeSH terms: Artificial Intelligence*
  14. Shafi G, Desai S, Srinivasan K, Ramesh A, Chaturvedi R, Uttarwar M
    Mol Genet Genomics, 2021 May;296(3):501-511.
    PMID: 33743061 DOI: 10.1007/s00438-021-01774-1
    Coronavirus disease 2019 (COVID-19), a recent viral pandemic that first began in December 2019, in Hunan wildlife market, Wuhan, China. The infection is caused by a coronavirus, SARS-CoV-2 and clinically characterized by common symptoms including fever, dry cough, loss of taste/smell, myalgia and pneumonia in severe cases. With overwhelming spikes in infection and death, its pathogenesis yet remains elusive. Since the infection spread rapidly, its healthcare demands are overwhelming with uncontrollable emergencies. Although laboratory testing and analysis are developing at an enormous pace, the high momentum of severe cases demand more rapid strategies for initial screening and patient stratification. Several molecular biomarkers like C-reactive protein, interleukin-6 (IL6), eosinophils and cytokines, and artificial intelligence (AI) based screening approaches have been developed by various studies to assist this vast medical demand. This review is an attempt to collate the outcomes of such studies, thus highlighting the utility of AI in rapid screening of molecular markers along with chest X-rays and other COVID-19 symptoms to enable faster diagnosis and patient stratification. By doing so, we also found that molecular markers such as C-reactive protein, IL-6 eosinophils, etc. showed significant differences between severe and non-severe cases of COVID-19 patients. CT findings in the lungs also showed different patterns like lung consolidation significantly higher in patients with poor recovery and lung lesions and fibrosis being higher in patients with good recovery. Thus, from these evidences we perceive that an initial rapid screening using integrated AI approach could be a way forward in efficient patient stratification.
    Matched MeSH terms: Artificial Intelligence*
  15. Alameri M, Hasikin K, Kadri NA, Nasir NFM, Mohandas P, Anni JS, et al.
    Comput Math Methods Med, 2021;2021:6953593.
    PMID: 34497665 DOI: 10.1155/2021/6953593
    Infertility is a condition whereby pregnancy does not occur despite having unprotected sexual intercourse for at least one year. The main reason could originate from either the male or the female, and sometimes, both contribute to the fertility disorder. For the male, sperm disorder was found to be the most common reason for infertility. In this paper, we proposed male infertility analysis based on automated sperm motility tracking. The proposed method worked in multistages, where the first stage focused on the sperm detection process using an improved Gaussian Mixture Model. A new optimization protocol was proposed to accurately detect the motile sperms prior to the sperm tracking process. Since the optimization protocol was imposed in the proposed system, the sperm tracking and velocity estimation processes are improved. The proposed method attained the highest average accuracy, sensitivity, and specificity of 92.3%, 96.3%, and 72.4%, respectively, when tested on 10 different samples. Our proposed method depicted better sperm detection quality when qualitatively observed as compared to other state-of-the-art techniques.
    Matched MeSH terms: Artificial Intelligence/statistics & numerical data
  16. Bhuiyan MS, Choudhury IA, Dahari M
    Biol Cybern, 2015 Apr;109(2):141-62.
    PMID: 25491411 DOI: 10.1007/s00422-014-0635-1
    Development of an advanced control system for prostheses (artificial limbs) is necessary to provide functionality, effectiveness, and preferably the feeling of a sound living limb. The development of the control system has introduced varieties of control strategies depending on the application. This paper reviews some control systems used for prosthetics, orthotics, and exoskeletons. The advantages and limitations of different control systems for particular applications have been discussed and presented in a comparative manner to help in deciding the appropriate method for pertinent application.
    Matched MeSH terms: Artificial Intelligence
  17. Cacha LA, Poznanski RR
    J Integr Neurosci, 2014 Jun;13(2):253-92.
    PMID: 25012712 DOI: 10.1142/S0219635214400081
    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain.
    Matched MeSH terms: Artificial Intelligence
  18. Syed Abdul Mutalib SN, Juahir H, Azid A, Mohd Sharif S, Latif MT, Aris AZ, et al.
    Environ Sci Process Impacts, 2013 Sep;15(9):1717-28.
    PMID: 23831918 DOI: 10.1039/c3em00161j
    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
    Matched MeSH terms: Artificial Intelligence
  19. Hannan MA, Arebey M, Begum RA, Basri H
    Waste Manag, 2012 Dec;32(12):2229-38.
    PMID: 22749722 DOI: 10.1016/j.wasman.2012.06.002
    An advanced image processing approach integrated with communication technologies and a camera for waste bin level detection has been presented. The proposed system is developed to address environmental concerns associated with waste bins and the variety of waste being disposed in them. A gray level aura matrix (GLAM) approach is proposed to extract the bin image texture. GLAM parameters, such as neighboring systems, are investigated to determine their optimal values. To evaluate the performance of the system, the extracted image is trained and tested using multi-layer perceptions (MLPs) and K-nearest neighbor (KNN) classifiers. The results have shown that the accuracy of bin level classification reach acceptable performance levels for class and grade classification with rates of 98.98% and 90.19% using the MLP classifier and 96.91% and 89.14% using the KNN classifier, respectively. The results demonstrated that the system performance is robust and can be applied to a variety of waste and waste bin level detection under various conditions.
    Matched MeSH terms: Artificial Intelligence
  20. Muda HM, Saad P, Othman RM
    Comput Biol Med, 2011 Aug;41(8):687-99.
    PMID: 21704312 DOI: 10.1016/j.compbiomed.2011.06.004
    Remote protein homology detection and fold recognition refer to detection of structural homology in proteins where there are small or no similarities in the sequence. To detect protein structural classes from protein primary sequence information, homology-based methods have been developed, which can be divided to three types: discriminative classifiers, generative models for protein families and pairwise sequence comparisons. Support Vector Machines (SVM) and Neural Networks (NN) are two popular discriminative methods. Recent studies have shown that SVM has fast speed during training, more accurate and efficient compared to NN. We present a comprehensive method based on two-layer classifiers. The 1st layer is used to detect up to superfamily and family in SCOP hierarchy using optimized binary SVM classification rules. It used the kernel function known as the Bio-kernel, which incorporates the biological information in the classification process. The 2nd layer uses discriminative SVM algorithm with string kernel that will detect up to protein fold level in SCOP hierarchy. The results obtained were evaluated using mean ROC and mean MRFP and the significance of the result produced with pairwise t-test was tested. Experimental results show that our approaches significantly improve the performance of remote protein homology detection and fold recognition for all three different version SCOP datasets (1.53, 1.67 and 1.73). We achieved 4.19% improvements in term of mean ROC in SCOP 1.53, 4.75% in SCOP 1.67 and 4.03% in SCOP 1.73 datasets when compared to the result produced by well-known methods. The combination of first layer and second layer of BioSVM-2L performs well in remote homology detection and fold recognition even in three different versions of datasets.
    Matched MeSH terms: Artificial Intelligence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links