METHODS: An electronic search was conducted using PubMed, Embase and Google Scholar search engines, to retrieve data on malocclusion prevalence for both mixed and permanent dentitions, up to December 2016.
RESULTS: Out of 2,977 retrieved studies, 53 were included. In permanent dentition, the global distributions of Class I, Class II, and Class III malocclusion were 74.7% [31 - 97%], 19.56% [2 - 63%] and 5.93% [1 - 20%], respectively. In mixed dentition, the distributions of these malocclusions were 73% [40 - 96%], 23% [2 - 58%] and 4% [0.7 - 13%]. Regarding vertical malocclusions, the observed deep overbite and open bite were 21.98% and 4.93%, respectively. Posterior crossbite affected 9.39% of the sample. Africans showed the highest prevalence of Class I and open bite in permanent dentition (89% and 8%, respectively), and in mixed dentition (93% and 10%, respectively), while Caucasians showed the highest prevalence of Class II in permanent dentition (23%) and mixed dentition (26%). Class III malocclusion in mixed dentition was highly prevalent among Mongoloids.
CONCLUSION: Worldwide, in mixed and permanent dentitions, Angle Class I malocclusion is more prevalent than Class II, specifically among Africans; the least prevalent was Class III, although higher among Mongoloids in mixed dentition. In vertical dimension, open bite was highest among Mongoloids in mixed dentition. Posterior crossbite was more prevalent in permanent dentition in Europe.
METHODS: In the present study, we included a larger sample size of P. knowlesi (83 samples) covering eight states of Malaysia to determine the genetic polymorphism, natural selection and haplotype groups of the gene fragment coding PkMSP-142. The region flanking PkMSP-142 was amplified by PCR and directly sequenced. Genetic diversity, haplotype diversity, population genetic differentiation and natural selection were determined in order to study the polymorphic characteristic of PkMSP-142.
RESULTS: A high level of genetic diversity (Hd = 0.970 ± 0.007; л = 0.01079 ± 0.00033) was observed among the 83 P. knowlesi samples, confirming the extensive genetic polymorphism exhibited among the P. knowlesi population found in Malaysia. A total of 18 distinct haplotypes with 17 amino acid changes were identified, whereby 15 were new haplotypes. High population differentiation values were observed within samples from Peninsular Malaysia and Malaysian Borneo. The 42 kDa fragments of P. knowlesi from Malaysian Borneo were found to be acting on balancing selection whilst purifying selection was suggested to act on isolates from Peninsular Malaysia. The separation of PkMSP-142 haplotypes into two main groups based on geographical separation has further supported the existence of two distinct P. knowlesi lineages.
CONCLUSIONS: A high level of genetic diversity was observed among PkMSP-142 in Malaysia, whereby most of the polymorphisms were found within the 33 kDa region. Taken together, these data will be useful in order to understand the nature of P. knowlesi population in Malaysia as well as the design and development of a MSP-142 based knowlesi malaria vaccine.