Displaying publications 261 - 280 of 1901 in total

Abstract:
Sort:
  1. Dua K, Wadhwa R, Singhvi G, Rapalli V, Shukla SD, Shastri MD, et al.
    Drug Dev Res, 2019 09;80(6):714-730.
    PMID: 31691339 DOI: 10.1002/ddr.21571
    Lung diseases are the leading cause of mortality worldwide. The currently available therapies are not sufficient, leading to the urgent need for new therapies with sustained anti-inflammatory effects. Small/short or silencing interfering RNA (siRNA) has potential therapeutic implications through post-transcriptional downregulation of the target gene expression. siRNA is essential in gene regulation, so is more favorable over other gene therapies due to its small size, high specificity, potency, and no or low immune response. In chronic respiratory diseases, local and targeted delivery of siRNA is achieved via inhalation. The effectual delivery can be attained by the generation of aerosols via inhalers and nebulizers, which overcomes anatomical barriers, alveolar macrophage clearance and mucociliary clearance. In this review, we discuss the different siRNA nanocarrier systems for chronic respiratory diseases, for safe and effective delivery. siRNA mediated pro-inflammatory gene or miRNA targeting approach can be a useful approach in combating chronic respiratory inflammatory conditions and thus providing sustained drug delivery, reduced therapeutic dose, and improved patient compliance. This review will be of high relevance to the formulation, biological and translational scientists working in the area of respiratory diseases.
    Matched MeSH terms: RNA Interference; RNA, Small Interfering
  2. Zulaikah Mohamed, Nazlina Ibrahim, Ismail Ahmad
    Sains Malaysiana, 2008;37(1):107-113.
    Methanol extract of Melastoma malabathricum leaves inhibited the growth of Staphylococcus aureus and six clinical isolates of Methicilin Resistant Stapyhlococcus aureus (MRSA 1-6). The minimum inhibitory concentration (MIC) of test substance was 1.565mg/ml and the minimum bacteriocidal concentration (MBC) was 3.125 mg/ml. The methanol extract suppressed RNA synthesis at 10 mg/ml as shown by RNA profile which was devoid of three bands compared to the control. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis using seven primer pairs was only successful in amplifying four cDNA amplicons. The failure to amplify three cDNA amplicons for three primer pairs corresponding to gyrA, femA and nuc genes, implied the possibility of suppression of the corresponding mRNA. Electrophoretic separation of endogenous and exogenuos bacterial proteins showed that three and five protein, respectively were not expressed. One endogenous and three exogenous proteins were over-expressed in treated MRSA compared with untreated control. The results of the molecular and proteomic analyses are in agreement, and based on primers being used, methanol extract of M. malabathricum leaves possibly inhibits MRSA growth through inhibition of DNA synthesis, peptidoglycan production, and nuclease production.
    Keywords: Methicillin resistant Staphylococcus aureus; Melastoma malabathricum; gene expression; protein production
    Matched MeSH terms: RNA; RNA, Messenger
  3. Sze-Looi Song, Kar-Hoe Loh, Phaik-Eem Lim, Amy Yee-Hui Then, Hoi-Sen Yong, Praphathip Eamsobhana
    Sains Malaysiana, 2018;47:2519-2531.
    Gymnothorax minor is a moray eel of the family Muraenidae found in the Western Pacific Ocean. We report here
    its complete mitogenome as determined by Illumina next-generation sequencing and the phylogenetic relationship
    with its congeners and other taxa of the family Muraenidae. The whole mitogenome of G. minor had a total length
    of 16,574 bp, comprising 37 genes - 13 protein-coding genes (PCGs), two ribosomal ribonucleic acid (rRNA) and 22
    transfer ribonucleic acid (tRNA) genes - and a control region. Excepting cox1 with GTG, the other 12 PCGs had ATG
    start codon. Seven of its PCGs had incomplete stop codon - five (nad2; cox1; cox2; nad3 and nad4) with T and two
    (atp6 and cox3) with TA. Molecular phylogeny based on 13 PCGs was concordant with 15 mitochondrial genes (13 PCGs
    and 2 rRNA genes). The subfamily Muraeninae as well as the subfamily Uropterygiinae were monophyletic. However,
    the genus Gymnothorax was paraphyletic, with G. minor forming a sister group with Rhinomuraena quaesita in the
    lineage containing also G. kidako and G. formosus forming a sister group with Enchelynassa canina. The phylogenetic
    relationship of the genus Gymnothorax and related taxa of the family Muraenidae, based on the mitochondrial cob
    gene, was in general similar to that based on 15 mt-genes. The mitogenome is useful for future studies on phylogenetics
    and systematics of eels of the family Muraenidae and other taxa of the order Anguilliformes.
    Matched MeSH terms: RNA, Ribosomal; RNA, Transfer
  4. Madhaiyan M, Saravanan VS, See-Too WS
    Int J Syst Evol Microbiol, 2020 Jun;70(6):3924-3929.
    PMID: 32441614 DOI: 10.1099/ijsem.0.004217
    Phylogenetic analysis based on 16S rRNA gene sequences of the genus Streptomyces showed the presence of six distinguishable clusters, with 100 % sequence similarity values among strains in each cluster; thus they shared almost the same evolutionary distance. This result corroborated well with the outcome of core gene (orthologous gene clusters) based genome phylogeny analysis of 190 genomes including the Streptomyces species in those six clusters. These preeminent results led to an investigation of genome-based indices such as digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI) and average amino acid identity (AAI) for the strains in those six clusters. Certain strains recorded genomic indices well above the threshold values (70 %, 95-96 % and >95 % for dDDH, ANI and AAI, respectively) determined for species affiliation, suggesting only one type strain belongs to described species and the other(s) may need to be reduced in taxa to a later heterotypic synonym. To conclude, the results of comprehensive analyses based on phylogenetic and genomic indices suggest that the following six reclassifications are proposed: Streptomyces flavovariabilis as a later heterotypic synonym of Streptomyces variegatus; Streptomyces griseofuscus as a later heterotypic synonym of Streptomyces murinus; Streptomyces kasugaensis as a later heterotypic synonym of Streptomyces celluloflavus; Streptomyces luridiscabiei as a later heterotypic synonym of Streptomyces fulvissimus; Streptomyces pharetrae as a later heterotypic synonym of Streptomyces glaucescens; and Streptomyces stelliscabiei as a later heterotypic synonym of Streptomyces bottropensis.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  5. Loh WLC, Huang KC, Ng HS, Lan JC
    J Biosci Bioeng, 2020 Aug;130(2):187-194.
    PMID: 32334990 DOI: 10.1016/j.jbiosc.2020.03.007
    Carotenoids serve as one of the most important group of naturally-occurring lipid-soluble pigments which exhibit great biological activities such as antioxidant, anti-inflammatory and provitamin A activities. Owing to their advantageous health effects, carotenoids are widely applied in various industries. Microbial carotenoids synthesis therefore has attracted increasing attention in recent years. In the present study, a marine microorganism originally isolated from seawater in northern Taiwan was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The strain G. terrae TWRH01 has the ability to synthesize and accumulate the intracellular pigments was identified by gas chromatography-mass spectrometry (GC-MS). The biochemical production characteristics of this strain were studied by employing different fermentation strategies. Findings suggested that G. terrae TWRH01 can actively grow and efficiently synthesize carotenoids in medium adjusted to pH 7 containing 16 g L-1 sucrose as the carbon source, 16 g L-1 yeast extract as the nitrogen source, 0.6 M NaCl concentration, and supplemented with 0.45% (v/v) 1 M CaCl2. Results revealed that the optimization of fermentation yielded 15.29 g L-1 dry biomass and 10.58 μmol L-1 relative β-carotene concentration. According to GC-MS analysis, the orange-red colored pigments produced were identified as carotenoid derivatives, mainly echinenone and adonixanthin 3'-β-d-glucoside. Therefore, the new bacterial strain showed a highly potential bioresource for the commercial production of natural carotenoids.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  6. Chigurupati S, Vijayabalan S, Selvarajan KK, Alhowail A, Kauser F
    J Complement Integr Med, 2020 Dec 22;18(2):319-325.
    PMID: 34187119 DOI: 10.1515/jcim-2020-0203
    OBJECTIVES: Research on endosymbionts is emerging globally and is considered as a potential source of bioactive phytochemicals. The present study examines the antioxidant and antidiabetic of the endophytic crude extract isolated from Leucaena leucocephala leaves.

    METHODS: Endophytic bacteria were isolated from the leaves of L. leucocephala and 16S rRNA gene sequencing was used to establish their identity. The in vitro antioxidant effect of endophytic crude extract (LL) was evaluated using 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radical scavenging methods. The in vitro antidiabetic properties of LL were evaluated using α-amylase and α-glucosidase enzyme inhibition assay.

    RESULTS: The isolated endophytic bacteria were identified as Cronobacter sakazakii. LL displayed potent free radical scavenging effect against ABTS and DPPH radicals with an inhibitory concentration 50% (IC50) value of 17.49 ± 0.06 and 11.3 ± 0.1 μg/mL respectively. LL exhibited α-amylase and α-glucosidase inhibition with an IC50 value of 23.3 ± 0.08 and 23.4 ± 0.1 μg/mL respectively compared to the standard drug (acarbose). Both glucose loaded normoglycemic rats and STZ induced diabetic rats treated with LL (200 mg/kg) exhibited a considerable reduction in blood glucose levels p<0.01 after 8 h of treatment when compared to normal and diabetic control rats respectively.

    CONCLUSIONS: Thus, the study shows that LL has a wellspring of natural source of antioxidants, and antidiabetic agents and phytoconstituents present in endophytes could be the rich source for bioactive compounds.

    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  7. Teo WFA, Tan GYA, Li WJ
    Int J Syst Evol Microbiol, 2021 Oct;71(10).
    PMID: 34714227 DOI: 10.1099/ijsem.0.005075
    The taxonomic positions of members within the family Pseudonocardiaceae were assessed based on phylogenomic trees reconstructed using core-proteome and genome blast distance phylogeny approaches. The closely clustered genome sequences from the type strains of validly published names within the family Pseudonocardiaceae were analysed using overall genome-related indices based on average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values. The family Pseudonocardiaceae consists of the type genus Pseudonocardia, as well as the genera Actinoalloteichus, Actinocrispum, Actinokineospora, Actinomycetospora, Actinophytocola, Actinopolyspora, Actinorectispora, Actinosynnema, Allokutzneria, Allosaccharopolyspora gen. nov., Amycolatopsis, Bounagaea, Crossiella, Gandjariella, Goodfellowiella, Haloactinomyces, Haloechinothrix, Halopolyspora, Halosaccharopolyspora gen. nov., Herbihabitans, Kibdelosporangium, Kutzneria, Labedaea, Lentzea, Longimycelium, Prauserella, Saccharomonospora, Saccharopolyspora, Saccharothrix, Salinifilum, Sciscionella, Streptoalloteichus, Tamaricihabitans, Thermocrispum, Thermotunica and Umezawaea. The G+C contents of the Pseudonocardiaceae genomes ranged from 66.2 to 74.6 mol% and genome sizes ranged from 3.69 to 12.28 Mbp. Based on the results of phylogenomic analysis, the names Allosaccharopolyspora coralli comb. nov., Halosaccharopolyspora lacisalsi comb. nov. and Actinoalloteichus caeruleus comb. nov. are proposed. This study revealed that Actinokineospora mzabensis is a heterotypic synonym of Actinokineospora spheciospongiae, Lentzea deserti is a heterotypic synonym of Lentzea atacamensis, Prauserella endophytica is a heterotypic synonym of Prauserella coralliicola, and Prauserella flava and Prauserella sediminis are heterotypic synonyms of Prauserella salsuginis. This study addresses the nomenclature conundrums of Actinoalloteichus cyanogriseus and Streptomyces caeruleus as well as Micropolyspora internatus and Saccharomonospora viridis.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  8. Gopinath D, Wie CC, Banerjee M, Thangavelu L, Kumar R P, Nallaswamy D, et al.
    Clin Oral Investig, 2022 Feb;26(2):1647-1656.
    PMID: 34436669 DOI: 10.1007/s00784-021-04137-7
    INTRODUCTION: Smoked, and especially smokeless, tobacco are major causes of oral cancer globally. Here, we examine the oral bacteriome of smokers and of smokeless tobacco users, in comparison to healthy controls, using 16S rRNA gene sequencing.

    METHODS: Oral swab samples were collected from smokers, smokeless tobacco users, and healthy controls (n = 44). Microbial DNA was extracted and the 16S rRNA gene profiled using the Illumina MiSeq platform. Sequencing reads were processed using DADA2, and taxonomical classification was performed using the phylogenetic placement method. Differentially abundant taxa were identified using DESeq2, while functional metagenomes based on KEGG orthology abundance were inferred using LIMMA.

    RESULTS: A significantly higher microbial diversity was observed in smokeless tobacco users and smokers relative to controls (P  1.5; BH adj P 

    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  9. Kuppusamy P, Govindan N, Yusoff MM, Ichwan SJA
    Saudi J Biol Sci, 2017 Sep;24(6):1212-1221.
    PMID: 28855814 DOI: 10.1016/j.sjbs.2014.09.017
    Colon cancer is the most common type of cancer and major cause of death worldwide. The detection of colon cancer is difficult in early stages. However, the secretory proteins have been used as ideal biomarker for the detection of colon cancer progress in cancer patients. Serum/tissue protein expression could help general practitioners to identify colon cancer at earlier stages. By this way, we use the biomarkers to evaluate the anticancer drugs and their response to therapy in cancer models. Recently, the biomarker discovery is important in cancer biology and disease management. Also, many measurable specific molecular components have been studied in colon cancer therapeutics. The biomolecules are mainly DNA, RNA, metabolites, enzymes, mRNA, aptamers and proteins. Thus, in this review we demonstrate the important protein biomarker in colon cancer development and molecular identification of protein biomarker discovery.
    Matched MeSH terms: RNA; RNA, Messenger
  10. Jain A, Jain A, Parajuli P, Mishra V, Ghoshal G, Singh B, et al.
    Drug Discov Today, 2018 05;23(5):960-973.
    PMID: 29129804 DOI: 10.1016/j.drudis.2017.11.003
    Galactosylated nanocarriers have recently emerged as viable and versatile tools to deliver drugs at an optimal rate specifically to their target tissues or cells, thus maximizing their therapeutic benefits while circumventing off-target effects. The abundance of lectin receptors on cell surfaces makes the galactosylated carriers suitable for the targeted delivery of bioactives. Additionally, tethering of galactose (GAL) to various carriers, including micelles, liposomes, and nanoparticles (NPs), might also be appropriate for drug delivery. Here, we review recent advances in the development of galactosylated nanocarriers for active tumor targeting. We also provide a brief overview of the targeting mechanisms and cell receptor theory involved in the ligand-receptor-mediated delivery of drug carriers.
    Matched MeSH terms: RNA, Small Interfering/administration & dosage*
  11. Grismer LL, Muin MA, Wood PL, Anuar S, Linkem CW
    Zootaxa, 2016 Mar 15;4092(2):231-42.
    PMID: 27394452 DOI: 10.11646/zootaxa.4092.2.6
    Phylogenetic analyses based on the mitochondrial gene ND2 and its flanking tRNAs indicate the diminutive upland and insular species Sphenomorphus bukitensis, S. butleri, S. langkawiensis, S. perhentianensis, and S. temengorensis form a monophyletic group that is phylogenetically embedded within the Southeast Asian genus Tytthoscincus. The analyses also indicate that a new swamp-dwelling skink from the Bukit Panchor State Park, Pulau Pinang, Peninsular Malaysia is the sister species to the swamp-dwelling species S. sibuensis from Pulau Sibu, Johor and Singapore and that these two are also embedded in the genus Tytthoscincus. By transferring the two Peninsular Malaysian clades of Sphenomorphus into the genus Tytthoscincus, the monophyly of the latter is maintained. The new species T. panchorensis sp. nov. can be distinguished from all other species of Tytthoscincus by having a unique combination of morphological and color pattern characteristics.
    Matched MeSH terms: RNA, Transfer/genetics*
  12. Cheng TH, Saidin J, Danish-Daniel M, Gan HM, Mat Isa MN, Abu Bakar MF, et al.
    Genome Announc, 2018 Feb 08;6(6).
    PMID: 29439033 DOI: 10.1128/genomeA.00022-18
    Serratia marcescens
    subsp.sakuensisstrain K27 was isolated from sponge (Haliclona amboinensis). The genome of this strain consists of 5,325,727 bp, with 5,140 open reading frames (ORFs), 3 rRNAs, and 67 tRNAs. It contains genes for the production of amylases, lipases, and proteases. Gene clusters for the biosynthesis of nonribosomal peptides and thiopeptide were also identified.
    Matched MeSH terms: RNA, Ribosomal; RNA, Transfer
  13. Hassan MI, McSorley FR, Hotta K, Boddy CN
    J Vis Exp, 2017 06 27.
    PMID: 28715370 DOI: 10.3791/55187
    Co-expression of multiple proteins is increasingly essential for synthetic biology, studying protein-protein complexes, and characterizing and harnessing biosynthetic pathways. In this manuscript, the use of a highly effective system for the construction of multigene synthetic operons under the control of an inducible T7 RNA polymerase is described. This system allows many genes to be expressed simultaneously from one plasmid. Here, a set of four related vectors, pMGX-A, pMGX-hisA, pMGX-K, and pMGX-hisK, with either the ampicillin or kanamycin resistance selectable marker (A and K) and either possessing or lacking an N-terminal hexahistidine tag (his) are disclosed. Detailed protocols for the construction of synthetic operons using this vector system are provided along with the corresponding data, showing that a pMGX-based system containing five genes can be readily constructed and used to produce all five encoded proteins in Escherichia coli. This system and protocol enables researchers to routinely express complex multi-component modules and pathways in E. coli.
    Matched MeSH terms: DNA-Directed RNA Polymerases/genetics*
  14. Ng SL, Nordin A, Abd Ghafar N, Suboh Y, Ab Rahim N, Chua KH
    Parasit Vectors, 2017 12 28;10(1):625.
    PMID: 29282148 DOI: 10.1186/s13071-017-2547-0
    BACKGROUND: In recent years, the concern of Acanthamoeba keratitis has increased since the infection is often associated with contact lens use. Partial 18S rRNA genotypic identification of Acanthamoeba isolates is important to correlate with pathophysiological properties in order to evaluate the degree of virulence. This is the first report of genotypic identification for clinical isolates of Acanthamoeba from corneal scrapings of keratitis in Malaysia. This study is also the first to correlate the mRNA expression of MBP and AhLBP as virulent markers for axenic strains of Acanthamoeba.

    RESULTS: In this study, ten clinical isolates were obtained from corneal scrapings. Rns genotype and intra-genotypic variation at the DF3 region of the isolates were identified. Results revealed that all clinical isolates belonged to the T4 genotype, with T4/6 (4 isolates), T4/2 (3 isolates), T4/16 (2 isolates) and one new genotype T4 sequence (T4/36), being determined. The axenic clinical isolates were cytopathogenic to rabbit corneal fibroblasts. MBP and AhLBP mRNA expression are directly correlated to Acanthamoeba cytopathic effect.

    CONCLUSIONS: All ten Malaysian clinical isolates were identified as genotype T4 which is predominantly associated with AK. Measuring the mRNA expression of Acanthamoeba virulent markers could be useful in the understanding of the pathogenesis of Acanthamoeba keratitis.

    Matched MeSH terms: RNA, Messenger; RNA, Ribosomal, 18S
  15. Syed Yaacob SN, Huyop F, Misson M, Abdul Wahab R, Huda N
    PeerJ, 2022;10:e13053.
    PMID: 35345581 DOI: 10.7717/peerj.13053
    BACKGROUND: Honey produced by Heterotrigona itama is highly preferred among consumers due to its high-value as a functional food and beneficial lactic acid bacteria (LAB) reservoir. Fructophilic lactic acid bacteria (FLAB) are a group of LAB with unique growth characteristics and are regarded as promising producers of bioactive compounds. Hence, it is not surprising that LAB, especially FLAB, may be involved with the excellent bioactivity of H. itama honey. With the trending consumer preference for H. itama honey coupled with increasing awareness for healthy food, the genomic background of FLAB isolated from this honey must, therefore, be clearly understood. In this study, one FLAB strain designated as Sy-1 was isolated from freshly collected H. itama honey. Its FLAB behavior and genomic features were investigated to uncover functional genes that could add value to functional food.

    METHODS: The fructophilic characteristics of strain Sy-1 were determined, and the genome was sequenced using Illumina iSeq100 and Oxford Nanopore. The average nucleotide identity and phylogenetic analyses based on 16S rRNA, 92 core genes, and whole-genome sequence were performed to unravel the phylogenetic position of strain Sy-1. NCBI Prokaryotic Genome Annotation Pipeline annotated the genome, while the EggNOG-mapper, BLASTKoala, and GHOSTKoala were used to add functional genes and pathways information.

    RESULTS: Strain Sy-1 prefers D-fructose over D-glucose and actively metabolizes D-glucose in the presence of electron acceptors. Genomic annotation of strain Sy-1 revealed few genes involved in carbohydrate transport and metabolism, and partial deletion of adhE gene, in line with the characteristic of FLAB. The 16S rRNA gene sequence of strain Sy-1 showed the highest similarity to unknown LAB species isolated from the gut of honeybees. The phylogenetic analyses discovered that strain Sy-1 belonged to the Lactobacillaceae family and formed a separate branch closer to type strain from the genera of Acetilactobacillus and Apilactobacillus. The ANI analysis showed the similarity of the closest relative, Apilactobacillus micheneri Hlig3T. The assembled genome of Sy-1 contains 3 contigs with 2.03 Mbp and a 41% GC content. A total of 1,785 genes were identified, including 1,685 protein-coding genes, 68 tRNA, and 15 rRNA. Interestingly, strain Sy-1 encoded complete genes for the biosynthesis of folate and riboflavin. High-performance liquid chromatography analysis further confirmed the high production of folic acid (1.346 mg/L) by Sy-1.

    DISCUSSION: Based on phylogenetic and biochemical characteristics, strain Sy-1 should be classified as a novel genus in the family of Lactobacillaceae and a new member of FLAB. The genome information coupled with experimental studies supported the ability of strain Sy-1 to produce high folic acid. Our collective findings support the suitable application of FLAB strain Sy-1 in the functional food and pharmaceutical industries.

    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  16. Mohd Salleh MH, Esa Y, Ngalimat MS, Chen PN
    PeerJ, 2022;10:e12970.
    PMID: 35368336 DOI: 10.7717/peerj.12970
    Southern River Terrapin, Batagur affinis, is a freshwater turtle listed as critically endangered on the IUCN Red List since 2000. Many studies suggest that faecal DNA metabarcoding can shield light on the host-associated microbial communities that play important roles in host health. Thus, this study aimed to characterise and compare the faecal bacterial community between captive and wild B. affinis using metabarcoding approaches. A total of seven faeces samples were collected from captive (N = 5) and wild (N = 2) adult B. affinis aseptically, crossing the East and West coast of peninsular Malaysia. The DNA was extracted from the faeces samples, and the 16S rRNA gene (V3-V4 region) was amplified using polymerase chain reaction (PCR). The amplicon was further analysed using SILVA and DADA2 pipelines. In total, 297 bacterial communities taxonomic profile (phylum to genus) were determined. Three phyla were found in high abundance in all faeces samples, namely Firmicutes (38.69%), Bacteroidetes (24.52%), and Fusobacteria (6.95%). Proteobacteria were detected in all faeces samples (39.63%), except the wild sample, KBW3. Under genus level, Cetobacteriumwas found as the most abundant genus (67.79%), followed by Bacteroides (24.56%) and Parabacteroides (21.78%). The uncultured genus had the highest abundance (88.51%) even though not detected in the BK31 and KBW2 samples. The potential probiotic genera (75.00%) were discovered to be more dominant in B. affinis faeces samples. Results demonstrated that the captive B. affinis faeces samples have a greater bacterial variety and richness than wild B. affinis faeces samples. This study has established a starting point for future investigation of the gut microbiota of B. affinis.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  17. Sharudin NA, Murtadha Noor Din AH, Azahar II, Mohd Azlan M, Yaacob NS, Sarmiento ME, et al.
    Asian Pac J Cancer Prev, 2022 Sep 01;23(9):2953-2964.
    PMID: 36172657 DOI: 10.31557/APJCP.2022.23.9.2953
    BACKGROUND: Detectable neonatal Nav1.5 (nNav1.5) expression in tumour breast tissue positive for lymph node metastasis and triple-negative subtype serves as a valid tumour-associated antigen to target and prevent breast cancer invasion and metastasis. Therapeutic antibodies against tumour antigens have become the predominant class of new drugs in cancer therapy because of their fewer adverse effects and high specificity.

    OBJECTIVE: This study was designed to investigate the therapeutic and anti-metastatic potential of the two newly obtained anti-nNav1.5 antibodies, polyclonal anti-nNav1.5 (pAb-nNav1.5) and monoclonal anti-nNav1.5 (mAb-nNav1.5), on breast cancer invasion and metastasis.

    METHODS: MDA-MB-231 and 4T1 cells were used as in vitro models to study the effect of pAb-nNav1.5 (59.2 µg/ml) and mAb-nNav1.5 (10 µg/ml) (24 hours treatment) on cell invasion. 4T1-induced mammary tumours in BALB/c female mice were used as an in vivo model to study the effect of a single dose of intravenous pAb-nNav1.5 (1 mg/ml) and mAb-nNav1.5 (1 mg/ml) on the occurrence of metastasis. Real-time PCR and immunofluorescence staining were conducted to assess the effect of antibody treatment on nNav1.5 mRNA and protein expression, respectively. The animals' body weight, organs, lesions, and tumour mass were also measured and compared.

    RESULTS: pAb-nNav1.5 and mAb-nNav1.5 treatments effectively suppressed the invasion of MDA-MB-231 and 4T1 cells in the 3D spheroid invasion assay. Both antibodies significantly reduced nNav1.5 gene and protein expression in these cell lines. Treatment with pAb-nNav1.5 and mAb-nNav1.5 successfully reduced mammary tumour tissue size and mass and prevented lesions in vital organs of the mammary tumour animal model whilst maintaining the animal's healthy weight. mRNA expression of nNav1.5 in mammary tumour tissues was only reduced by mAb-nNav1.5.

    CONCLUSION: Overall, this work verifies the uniqueness of targeting nNav1.5 in breast cancer invasion and metastasis prevention, but more importantly, humanised versions of mAb-nNav1.5 may be valuable passive immunotherapeutic agents to target nNav1.5 in breast cancer.

    Matched MeSH terms: RNA, Messenger/genetics
  18. Samad AFA, Kamaroddin MF, Sajad M
    Adv Nutr, 2021 Feb 01;12(1):197-211.
    PMID: 32862223 DOI: 10.1093/advances/nmaa095
    microRNAs (miRNAs) are well known as major players in mammalian and plant genetic systems that act by regulating gene expression at the post-transcriptional level. These tiny molecules can regulate target genes (mRNAs) through either cleavage or translational inhibition. Recently, the discovery of plant-derived miRNAs showing cross-kingdom abilities to regulate mammalian gene expression has prompted exciting discussions among researchers. After being acquired orally through the diet, plant miRNAs can survive in the digestive tract, enter the circulatory system, and regulate endogenous mRNAs. Here, we review current knowledge regarding the cross-kingdom mechanisms of plant miRNAs, related controversies, and potential applications of these miRNAs in dietary therapy, which will provide new insights for plant miRNA investigations related to health issues in humans.
    Matched MeSH terms: RNA, Plant/genetics
  19. Ng HF, Ngeow YF
    Microb Drug Resist, 2023 Feb;29(2):41-46.
    PMID: 36802272 DOI: 10.1089/mdr.2022.0068
    Linezolid is one of the antibiotics used to treat the Mycobacteroides abscessus infection. However, linezolid-resistance mechanisms of this organism are not well understood. The objective of this study was to identify possible linezolid-resistance determinants in M. abscessus through characterization of step-wise mutants selected from a linezolid-susceptible strain, M61 (minimum inhibitory concentration [MIC]: 0.25 mg/L). Whole-genome sequencing and subsequent PCR verification of the resistant second-step mutant, A2a(1) (MIC: >256 mg/L), revealed three mutations in its genome, two of which were found in the 23S rDNA (g2244t and g2788t) and another one was found in a gene encoding the fatty-acid-CoA ligase FadD32 (c880t→H294Y). The 23S rRNA is the molecular target of linezolid and mutations in this gene are likely to contribute to resistance. Furthermore, PCR analysis revealed that the c880t mutation in the fadD32 gene first appeared in the first-step mutant, A2 (MIC: 1 mg/L). Complementation of the wild-type M61 with the pMV261 plasmid carrying the mutant fadD32 gene caused the previously sensitive M61 to develop a reduced susceptibility to linezolid (MIC: 1 mg/L). The findings of this study uncovered hitherto undescribed mechanisms of linezolid resistance in M. abscessus that may be useful for the development of novel anti-infective agents against this multidrug-resistant pathogen.
    Matched MeSH terms: RNA, Ribosomal, 23S/genetics
  20. Jalanka J, Gunn D, Singh G, Krishnasamy S, Lingaya M, Crispie F, et al.
    Gut, 2023 Mar;72(3):451-459.
    PMID: 36171082 DOI: 10.1136/gutjnl-2021-326828
    OBJECTIVES: Persistent bowel dysfunction following gastroenteritis (postinfectious (PI)-BD) is well recognised, but the associated changes in microbiota remain unclear. Our aim was to define these changes after gastroenteritis caused by a single organism, Campylobacter jejuni, examining the dynamic changes in the microbiota and the impact of antibiotics.

    DESIGN: A single-centre cohort study of 155 patients infected with Campylobacter jejuni. Features of the initial illness as well as current bowel symptoms and the intestinal microbiota composition were recorded soon after infection (visit 1, <40 days) as well as 40-60 days and >80 days later (visits 2 and 3). Microbiota were assessed using 16S rRNA sequencing.

    RESULTS: PI-BD was found in 22 of the 99 patients who completed the trial. The cases reported significantly looser stools, with more somatic and gastrointestinal symptoms. Microbiota were assessed in 22 cases who had significantly lower diversity and altered microbiota composition compared with the 44 age-matched and sex-matched controls. Moreover 60 days after infection, cases showed a significantly lower abundance of 23 taxa including phylum Firmicutes, particularly in the order Clostridiales and the family Ruminoccocaceae, increased Proteobacteria abundance and increased levels of Fusobacteria and Gammaproteobacteria. The microbiota changes were linked with diet; higher fibre consumption being associated with lower levels of Gammaproteobacteria.

    CONCLUSION: The microbiota of PI-BD patients appeared more disturbed by the initial infection compared with the microbiota of those who recovered. The prebiotic effect of high fibre diets may inhibit some of the disturbances seen in PI-BD.

    TRIAL REGISTRATION NUMBER: NCT02040922.

    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links