METHODS: We recruited 54 abdominally obese subjects to participate in a prospective cross-over design, single-blind trial comparing isocaloric 2000 kcal MUFA or carbohydrate-enriched diet with SFA-enriched diet (control). The control diet consisted of 15E% protein, 53E% carbohydrate and 32E% fat (12E% SFA, 13E% MUFA). A total of ∼7E% of MUFA or refined carbohydrate was exchanged with SFA in the MUFA-rich and carbohydrate-rich diets respectively for 6-weeks. Blood samples were collected at fasting upon trial commencement and at week-5 and 6 of each dietary-intervention phase to measure levels of cytokines (IL-6, IL-1β), C-reactive protein (CRP), thrombogenic markers (E-selectin, PAI-1, D-dimer) and lipid subfractions. Radial pulse wave analysis and a 6-h postprandial mixed meal challenge were carried out at week-6 of each dietary intervention. Blood samples were collected at fasting, 15 and 30 min and hourly intervals thereafter till 6 h after a mixed meal challenge (muffin and milkshake) with SFA or MUFA (872.5 kcal, 50 g fat, 88 g carbohydrates) or CARB (881.3 kcal, 20 g fat, 158 g carbohydrates)- enrichment corresponding to the background diets.
RESULTS: No significant differences in fasting inflammatory and thrombogenic factors were noted between diets (P > 0.05). CARB meal was found to increase plasma IL-6 whereas MUFA meal elevated plasma D-dimer postprandially compared with SAFA meal (P
OBJECTIVE: The objective was to generate evidence on the association between WHO dietary recommendations and mortality from CVD, coronary artery disease (CAD), and stroke in the elderly aged ≥60 y.
DESIGN: We analyzed data from 10 prospective cohort studies from Europe and the United States comprising a total sample of 281,874 men and women free from chronic diseases at baseline. Components of the Healthy Diet Indicator (HDI) included saturated fatty acids, polyunsaturated fatty acids, mono- and disaccharides, protein, cholesterol, dietary fiber, and fruit and vegetables. Cohort-specific HRs adjusted for sex, education, smoking, physical activity, and energy and alcohol intakes were pooled by using a random-effects model.
RESULTS: During 3,322,768 person-years of follow-up, 12,492 people died of CVD. An increase of 10 HDI points (complete adherence to an additional WHO guideline) was, on average, not associated with CVD mortality (HR: 0.94; 95% CI: 0.86, 1.03), CAD mortality (HR: 0.99; 95% CI: 0.85, 1.14), or stroke mortality (HR: 0.95; 95% CI: 0.88, 1.03). However, after stratification of the data by geographic region, adherence to the HDI was associated with reduced CVD mortality in the southern European cohorts (HR: 0.87; 95% CI: 0.79, 0.96; I(2) = 0%) and in the US cohort (HR: 0.85; 95% CI: 0.83, 0.87; I(2) = not applicable).
CONCLUSION: Overall, greater adherence to the WHO dietary guidelines was not significantly associated with CVD mortality, but the results varied across regions. Clear inverse associations were observed in elderly populations in southern Europe and the United States.
METHODS: A cluster-randomized controlled trial was conducted with schools as clusters over a period of six-months with pre and post intervention evaluations. Participants were public secondary school students (14-19 years) from four schools in Brong Ahafo, Ghana. Students in the intervention group were trained by the researchers whereas those of the control group received no intervention. The intervention included health education and physical activity modules. Follow-up data using same questionnaire were collected within two weeks after the intervention was completed. Intention-to-treat analysis was performed after replacing missing values using the multiple imputation method. The generalized linear mixed model (GLMM) was used to assess the effects of the intervention study.
RESULTS: The GLMM analyses showed the intervention was effective in attaining 0.77(p<0.001), 0.72(p<0.001), 0.47(p<0.001), 0.56(p<0.001), and 0.39(p = 0.045) higher total physical activity, fruits, vegetables, seafood, and water scores respectively for the intervention group over the control group. The intervention was also significant in reducing -0.15(p<0.001),-0.23(p<0.001),-0.50(p<0.001),-0.32(p<0.001),-0.90(p<0.001),-0.87(p<0.001),-0.38(p<0.001), -0.63(p<0.001), -1.63(p<0.001), 0.61(p<0.001), and -1.53(p = 0.005) carbohydrates, fats and oils, fried eggs, fried chicken, carbonated drinks, sugar, sweet snacks, salted fish, weight, BMI, and diastolic BP. The odds of quitting alcohol use in the intervention group were 1.06 times more than the control group. There was no significant effect on reducing smoking and systolic BP.
CONCLUSION: There is an urgent need for the intervention program to be integrated into the existing curriculum structure of secondary school schools. Implementing the intervention will allow for longer and more consistent impact on the reduction of CVD risk factors among secondary school students.