Displaying publications 281 - 300 of 857 in total

Abstract:
Sort:
  1. Smith JR, Ghazoul J, Burslem DFRP, Itoh A, Khoo E, Lee SL, et al.
    PLoS One, 2018;13(3):e0193501.
    PMID: 29547644 DOI: 10.1371/journal.pone.0193501
    Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species' FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species' range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable.
    Matched MeSH terms: Tropical Climate*
  2. Arsad FS, Hod R, Ahmad N, Ismail R, Mohamed N, Baharom M, et al.
    Int J Environ Res Public Health, 2022 Dec 06;19(23).
    PMID: 36498428 DOI: 10.3390/ijerph192316356
    BACKGROUND: This study aims to investigate the current impacts of extreme temperature and heatwaves on human health in terms of both mortality and morbidity. This systematic review analyzed the impact of heatwaves on mortality, morbidity, and the associated vulnerability factors, focusing on the sensitivity component.

    METHODS: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. Four databases (Scopus, Web of Science, EBSCOhost, PubMed) were searched for articles published from 2012 to 2022. Those eligible were evaluated using the Navigation Guide Systematic Review framework.

    RESULTS: A total of 32 articles were included in the systematic review. Heatwave events increased mortality and morbidity incidence. Sociodemographic (elderly, children, male, female, low socioeconomic, low education), medical conditions (cardiopulmonary diseases, renal disease, diabetes, mental disease), and rural areas were crucial vulnerability factors.

    CONCLUSIONS: While mortality and morbidity are critical aspects for measuring the impact of heatwaves on human health, the sensitivity in the context of sociodemographic, medical conditions, and locality posed a higher vulnerability to certain groups. Therefore, further research on climate change and health impacts on vulnerability may help stakeholders strategize effective plans to reduce the effect of heatwaves.

    Matched MeSH terms: Climate Change*
  3. Masud MM, Akhatr R, Nasrin S, Adamu IM
    Environ Sci Pollut Res Int, 2017 Dec;24(34):26462-26477.
    PMID: 28948471 DOI: 10.1007/s11356-017-0188-7
    Socio-demographic factors play a significant role in increasing the individual's climate change awareness and in setting a favorable individual attitude towards its mitigation. To better understand how the adversative effects of climate change can be mitigated, this study attempts to investigate the impact of socio-demographic factors on the mitigating actions of the individuals (MAOI) on climate change. Qualitative data were collected from a face-to-face survey of 360 respondents in the Kuala Lumpur region of Malaysia through a close-ended questionnaire. Analysis was conducted on the mediating effects of attitudinal variables through the path model by using the SEM. Findings indicate that the socio-demographic factors such as gender, age, education, income, and ethnicity can greatly influence the individual's awareness, attitude, risk perception, and knowledge of climate change issues. The results drawn from this study also revealed that the attitudinal factors act as a mediating effect between the socio-demographic factors and the MAOI, thereby, indicating that both the socio-demographic factors and the attitudinal factors have significant effects on the MAOI towards climate change. The outcome of this study can help policy makers and other private organizations to decide on the appropriate actions to take in managing climate change effects. These actions which encompass improving basic climate change education and making the public more aware of the local dimensions of climate change are important for harnessing public engagement and support that can also stimulate climate change awareness and promote mitigating actions to n protect the environment from the impact of climate change.
    Matched MeSH terms: Climate Change*
  4. Nasim W, Belhouchette H, Tariq M, Fahad S, Hammad HM, Mubeen M, et al.
    Environ Sci Pollut Res Int, 2016 Feb;23(4):3658-70.
    PMID: 26498803 DOI: 10.1007/s11356-015-5613-1
    Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.
    Matched MeSH terms: Climate Change*
  5. Ahmed A, Masud MM, Al-Amin AQ, Yahaya SR, Rahman M, Akhtar R
    Environ Sci Pollut Res Int, 2015 Jun;22(12):9494-504.
    PMID: 25613801 DOI: 10.1007/s11356-015-4110-x
    This study empirically estimates farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in Pakistan's agricultural sectors. The contingent valuation method (CVM) was employed to determine a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues. The survey was conducted by distributing structured questionnaires among Pakistani farmers. The study found that 67 % of respondents were willing to pay for a planned adaptation programme. However, several socioeconomic and motivational factors exert greater influence on their willingness to pay (WTP). This paper specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support attempts by policy makers to design an efficient adaptation framework for mitigating and adapting to the adverse impacts of climate change.
    Matched MeSH terms: Climate Change*
  6. Warsame AA, Sheik-Ali IA, Barre GM, Ahmed A
    Environ Sci Pollut Res Int, 2023 Jan;30(2):3293-3306.
    PMID: 35945318 DOI: 10.1007/s11356-022-22227-1
    Agricultural production is sensitive to climate variability, so climate change-agriculture sector nexus is topical in developing countries. To this end, this study examines the impact of climate change variables-rainfall and temperature-and non-climatic factors on maize production in Somalia for the period between 1980 and 2018 using the autoregressive distributed lag (ARDL) bound test, dynamic ordinary least square (DOLS), variance decomposition(VD), and impulse response function (IRF). The empirical results of the ARDL bound test confirmed the presence of long-run cointegration between the dependent variable and the explanatory variables. Furthermore, the long-run results revealed that average temperature, average rainfall, and political instability significantly inhibit maize production in the long and short runs, but rainfall has a favorable effect on maize production in the short run. Furthermore, rural population and land area under maize cultivation have negative and positive effects on maize production in the long run, respectively-albeit they are statistically insignificant. The empirical results of the study are robust to different econometric methods. Based on these findings, the study emphasizes the importance of the de-escalation of conflicts and the implementation of irrigation facilities which will enhance the productivity of maize crop production.
    Matched MeSH terms: Climate Change*
  7. Slik JWF, Franklin J, Arroyo-Rodríguez V, Field R, Aguilar S, Aguirre N, et al.
    Proc Natl Acad Sci U S A, 2018 02 20;115(8):1837-1842.
    PMID: 29432167 DOI: 10.1073/pnas.1714977115
    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.
    Matched MeSH terms: Tropical Climate*
  8. van der Werf GR, Dempewolf J, Trigg SN, Randerson JT, Kasibhatla PS, Giglio L, et al.
    Proc Natl Acad Sci U S A, 2008 Dec 23;105(51):20350-5.
    PMID: 19075224 DOI: 10.1073/pnas.0803375105
    Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000-2006. We found that average fire emissions from this region [128 +/- 51 (1sigma) Tg carbon (C) year(-1), T = 10(12)] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000-2006 mean of 74 +/- 33 Tg C yr(-1)). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year(-2) (approximately doubling during 2000-2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate-carbon cycle feedbacks during the 21st century.
    Matched MeSH terms: Climate*
  9. Slik JW, Arroyo-Rodríguez V, Aiba S, Alvarez-Loayza P, Alves LF, Ashton P, et al.
    Proc Natl Acad Sci U S A, 2015 Jun 16;112(24):7472-7.
    PMID: 26034279 DOI: 10.1073/pnas.1423147112
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
    Matched MeSH terms: Tropical Climate*
  10. Anyamba A, Chretien JP, Small J, Tucker CJ, Linthicum KJ
    Int J Health Geogr, 2006 Dec 28;5:60.
    PMID: 17194307
    BACKGROUND: El Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hemisphere particularly over North America. Building evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. We describe developing climate anomalies that suggest potential disease risks using satellite generated data.

    RESULTS: Sea surface temperatures (SSTs) in the equatorial east Pacific ocean have anomalously increased significantly during July - October 2006 indicating the typical development of El Niño conditions. The persistence of these conditions will lead to extremes in global-scale climate anomalies as has been observed during similar conditions in the past. Positive Outgoing Longwave Radiation (OLR) anomalies, indicative of severe drought conditions, have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts. This dryness can be expected to continue, on average, for the remainder of 2006 continuing into the early part of 2007. During the period November 2006 - January 2007 climate forecasts indicate that there is a high probability for above normal rainfall in the central and eastern equatorial Pacific Islands, the Korean Peninsula, the U.S. Gulf Coast and Florida, northern South America and equatorial east Africa. Taking into consideration current observations and climate forecast information, indications are that the following regions are at increased risk for disease outbreaks: Indonesia, Malaysia, Thailand and most of the southeast Asia Islands for increased dengue fever transmission and increased respiratory illness; Coastal Peru, Ecuador, Venezuela, and Colombia for increased risk of malaria; Bangladesh and coastal India for elevated risk of cholera; East Africa for increased risk of a Rift Valley fever outbreak and elevated malaria; southwest USA for increased risk for hantavirus pulmonary syndrome and plague; southern California for increased West Nile virus transmission; and northeast Brazil for increased dengue fever and respiratory illness.

    CONCLUSION: The current development of El Niño conditions has significant implications for global public health. Extremes in climate events with above normal rainfall and flooding in some regions and extended drought periods in other regions will occur. Forecasting disease is critical for timely and efficient planning of operational control programs. In this paper we describe developing global climate anomalies that suggest potential disease risks that will give decision makers additional tools to make rational judgments concerning implementation of disease prevention and mitigation strategies.

    Matched MeSH terms: Climate*
  11. Fleming LE, Landrigan PJ, Ashford OS, Whitman EM, Swift A, Gerwick WH, et al.
    Ann Glob Health, 2024;90(1):41.
    PMID: 39005643 DOI: 10.5334/aogh.4471
    A healthy ocean is essential for human health, and yet the links between the ocean and human health are often overlooked. By providing new medicines, technologies, energy, foods, recreation, and inspiration, the ocean has the potential to enhance human health and wellbeing. However, climate change, pollution, biodiversity loss, and inequity threaten both ocean and human health. Sustainable realisation of the ocean's health benefits will require overcoming these challenges through equitable partnerships, enforcement of laws and treaties, robust monitoring, and use of metrics that assess both the ocean's natural capital and human wellbeing. Achieving this will require an explicit focus on human rights, equity, sustainability, and social justice. In addition to highlighting the potential unique role of the healthcare sector, we offer science-based recommendations to protect both ocean health and human health, and we highlight the unique potential of the healthcare sector tolead this effort.
    Matched MeSH terms: Climate Change*
  12. Gunawardena SA, Abeyratne P, Jayasena A, Rajapaksha S, Senadhipathi H, Siriwardana D, et al.
    Sci Justice, 2023 Sep;63(5):638-650.
    PMID: 37718011 DOI: 10.1016/j.scijus.2023.08.001
    Estimating the post mortem interval (PMI) in skeletonized cases is an extremely challenging exercise. Sri Lanka lacks adequate taphonomic research which is a serious limitation when assessing PMI in forensic death investigations. Methods that have been proposed to estimate PMI using the total body score (TBS) and accumulated degree days (ADD) are mainly based on data from continental and temperate climates and have shown less reliability in tropical climates. With the intention of developing a region-specific, evidence-based guide which would be applicable to tropical climates like Sri Lanka, we selected thirteen skeletonized remains with known PMIs from forensic case records and analysed their taphonomy in relation to selected weather data. We also compared the ADD values within our dataset with reference ranges calculated using published formula. All except one were found from outdoor locations. The TBS ranged from 24 to 32 and had a weak positive correlation with the PMI. The earliest appearance of skeletonization was 15 days in a body found indoors. The highest rate of skeletonization was seen in a body with a TBS of 32 and a PMI of 23 days. The average daily temperature and relative humidity were similar across all the cases however, the amount of rainfall varied. Bodies exposed to monsoon rains (n = 6) had a lower mean rate of skeletonization compared to those that were not exposed (n = 4) suggesting lower rates of decomposition during periods of heavy rainfall. No correlation was found between ADD and TBS. In 9 (69.2%) cases, the actual ADD was much lower than reference ADD ranges for TBS values, indicating poor applicability of TBS and ADD based formulae in estimating PMI within the Sri Lankan climate. Our study shows a strong need for taphonomic and entomological research in tropical climates to further explore the impact of monsoons on biotic and abiotic factors affecting skeletonization.
    Matched MeSH terms: Tropical Climate*
  13. Hassan NA, Hashim JH, Wan Puteh SE, Wan Mahiyuddin WR, Mohd MSF, Shaharudin SM, et al.
    PLoS One, 2023;18(10):e0283133.
    PMID: 37862373 DOI: 10.1371/journal.pone.0283133
    This study is an attempt to investigate climate-induced increases in morbidity rates of food poisoning cases. Monthly food poisoning cases, average monthly meteorological data, and population data from 2004 to 2014 were obtained from the Malaysian Ministry of Health, Malaysian Meteorological Department, and Department of Statistics Malaysia, respectively. Poisson generalised linear models were developed to assess the association between climatic parameters and the number of reported food poisoning cases. The findings revealed that the food poisoning incidence in Malaysia during the 11 years study period was 561 cases per 100 000 population for the whole country. Among the cases, females and the ethnic Malays most frequently experienced food poisoning with incidence rates of 313 cases per 100,000 and 438 cases per 100,000 population over the period of 11 years, respectively. Most of the cases occurred within the active age of 13 to 35 years old. Temperature gave a significant impact on the incidence of food poisoning cases in Selangor (95% CI: 1.033-1.479; p = 0.020), Melaka (95% CI: 1.046-2.080; p = 0.027), Kelantan (95% CI: 1.129-1.958; p = 0.005), and Sabah (95% CI: 1.127-2.690; p = 0.012) while rainfall was a protective factor in Terengganu (95% CI: 0.996-0.999; p = 0.034) at lag 0 month. For a 1.0°C increase in temperature, the excess risk of food poisoning in each state can increase up to 74.1%, whereas for every 50 mm increase in rainfall, the risk of getting food poisoning decreased by almost 10%. The study concludes that climate does affect the distribution of food poisoning cases in Selangor, Melaka, Kelantan, Sabah, and Terengganu. Food poisoning cases in other states are not directly associated with temperature but related to monthly trends and seasonality.
    Matched MeSH terms: Climate Change*
  14. Helbert, Turjaman M, Nara K
    PLoS One, 2019;14(9):e0221998.
    PMID: 31498844 DOI: 10.1371/journal.pone.0221998
    In Southeast Asia, primary tropical rainforests are usually dominated by ectomycorrhizal (ECM) trees belonging to Dipterocarpaceae, although arbuscular mycorrhizal trees often outcompete them after disturbances such as forest fires and clear-cutting, thus preventing dipterocarp regeneration. In some secondary tropical forests, however, potentially ECM trees belonging to Tristaniopsis (Myrtaceae) become dominant and may help ECM dipterocarp forests to recover. However, we have no information about their mycorrhizal status in these settings. In this study, we analyzed ECM fungal communities in tropical secondary forests dominated by Tristaniopsis and investigated which ECM fungal species are shared with other tropical or temperate areas. In total, 100 samples were collected from four secondary forests dominated by Tristaniopsis on Bangka Island. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM and host species. Based on a >97% ITS sequence similarity threshold, we identified 56 ECM fungal species dominated by Thelephoraceae, Russulaceae, and Clavulinaceae. Some of the ECM fungal species were shared between dominant Tristaniopsis and coexisting Eucalyptus or Quercus trees, including 5 common to ECM fungi recorded in a primary mixed dipterocarp forest at Lambir Hill, Malaysia. In contrast, no ECM fungal species were shared with other geographical regions, even with Tristaniopsis in New Caledonia. These results imply that secondary tropical forests dominated by Tristaniopsis harbor diverse ECM fungi, including those that inhabit primary dipterocarp forests in the same geographical region. They may function as refugia for ECM fungi, given that dipterocarp forests are disappearing quickly due to human activity.
    Matched MeSH terms: Tropical Climate*
  15. Malhi Y, Riutta T, Wearn OR, Deere NJ, Mitchell SL, Bernard H, et al.
    Nature, 2022 Dec;612(7941):707-713.
    PMID: 36517596 DOI: 10.1038/s41586-022-05523-1
    Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.
    Matched MeSH terms: Tropical Climate*
  16. Kafy AA, Dey NN, Saha M, Altuwaijri HA, Fattah MA, Rahaman ZA, et al.
    J Environ Manage, 2024 Nov;370:122427.
    PMID: 39305877 DOI: 10.1016/j.jenvman.2024.122427
    Climate change and rapid urbanization are dramatically altering coastal ecosystems worldwide, with significant implications for land surface temperatures (LST) and carbon stock concentration (CSC). This study investigates the impacts of day and night time LST dynamics on CSC in Cox's Bazar, Bangladesh, from 1996 to 2021, with future projections to 2041. Using Landsat and MODIS imagery, we found that mean daytime LST increased by 3.57 °C over the 25-year period, while nighttime LST showed a slight decrease of 0.05 °C. Concurrently, areas with no carbon storage increased by 355.78%, while high and very high CSC zones declined by 14.15% and 47.78%, respectively. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model estimated a 28.64 km2 reduction in high CSC areas from 1996 to 2021. Statistical analysis revealed strong negative correlations between LST and vegetation indices (R2 = -0.795 to -0.842, p 32 °C, while areas with LST <24 °C may decrease to 1.68%. These observations underscore the pressing necessity for sustainable strategies in urban planning and conservation in swiftly evolving coastal areas, especially considering the challenges posed by climate change and population growth.
    Matched MeSH terms: Climate Change*
  17. Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Beagley J, Belesova K, et al.
    Lancet, 2021 Jan 09;397(10269):129-170.
    PMID: 33278353 DOI: 10.1016/S0140-6736(20)32290-X
    For the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.
    Matched MeSH terms: Climate Change*
  18. Williams CR, Gill BS, Mincham G, Mohd Zaki AH, Abdullah N, Mahiyuddin WR, et al.
    Epidemiol Infect, 2015 Oct;143(13):2856-64.
    PMID: 25591942 DOI: 10.1017/S095026881400380X
    We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.
    Matched MeSH terms: Climate Change*
  19. Marsh CJ, Turner EC, Blonder BW, Bongalov B, Both S, Cruz RS, et al.
    Science, 2025 Jan 10;387(6730):171-175.
    PMID: 39787239 DOI: 10.1126/science.adf9856
    The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear. Variables that were directly impacted by the physical process of timber extraction, such as soil structure, were sensitive to even moderate amounts of logging, whereas measures of biodiversity and ecosystem functioning were generally resilient to logging but more affected by conversion to oil palm plantation.
    Matched MeSH terms: Tropical Climate*
  20. Lokmic-Tomkins Z, Bhandari D, Watterson J, Pollock WE, Cochrane L, Robinson E, et al.
    BMJ Open, 2023 Jul 27;13(7):e073960.
    PMID: 37500279 DOI: 10.1136/bmjopen-2023-073960
    INTRODUCTION: Growing evidence suggests that climate change-related extreme weather events adversely impact maternal and child health (MCH) outcomes, which requires effective, sustainable and culturally appropriate interventions at individual, community and policy levels to minimise these impacts. This scoping review proposes to map the evidence available on the type, characteristics and outcomes of multilevel interventions implemented as adaptational strategies to protect MCH from the possible adverse effects of climate change.

    METHODS: The following databases will be searched: Embase, MEDLINE, Emcare, EPPI-Centre database of health promotion research (BiblioMap) EPPI-Centre Database for promoting Health Effectiveness Reviews (DoPHER), Global Health, CINAHL, Joanna Briggs Institute EBP Database, Maternity and Infant Care Database, Education Resource Information Center, PsycINFO, Scopus, Web of Science and Global Index Medicus, which indexes Latin America and the Caribbean, Index Medicus for the South-East Asia Region, African Index Medicus, Western Pacific Region Index Medicus. Cochrane Central Register of Controlled Trials, WHO International Clinical Trials Registry Platform, ClinicalTrials.gov, conference proceedings, thesis and dissertations, policy and guidelines and their reference lists will also be searched. Two reviewers will independently screen titles and abstracts and full text based on predefined eligibility criteria. The Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews using the Population, Concept and Context framework and the Template for Intervention Description and Replication checklist will be used to structure and report the findings.

    ETHICS AND DISSEMINATION: Ethics permission to conduct the scoping review is not required as the information collected is publicly available through databases. Findings will be disseminated through a peer-reviewed publication and conference presentations.

    Matched MeSH terms: Climate Change*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links