METHODS: One hundred and ninety-seven healthy women, aged 25 to 60, were selected from a hospital staff health screening program; 68% were Chinese, 18% Malay, and 14% Indian. P1NP, CTX, and 25-OHD(3) were measured using the Roche Cobas® electrochemiluminescence immunoassay. Serum PTH was measured using the Siemens ADVIA Centaur® immunoassay.
RESULTS: Sixty-five percent had 25-OHD(3) concentrations <50 nmol/l. Vitamin D insufficiency (25-OHD(3) < 50 nmol/l) was more prevalent in Malays (89%) and Indians (82%) compared to Chinese (56%). There was no correlation between vitamin D and age. PTH positively correlated with age, and Malays and Indians had higher PTH concentrations than Chinese. There was an inverse correlation between PTH and 25-OHD(3), but no threshold of 25-OHD(3) concentrations at which PTH plateaued. The bone turnover markers P1NP and CTX inversely correlated with age but were not different between ethnic groups. CTX and P1NP exhibited good correlation, however, there was no significant correlation between 25-OHD(3) or PTH concentrations and the bone turnover markers P1NP and CTX.
CONCLUSIONS: Healthy women in Singapore have a high prevalence of vitamin D insufficiency. Vitamin D insufficiency was more prevalent in Malays and Indians compared to Chinese.
OBJECTIVE: To determine the effect of a physiologically compatible pH moisturizer in atopic dermatitis.
METHODS: A randomized half body, double blind, controlled trial involving patients with stable atopic dermatitis was performed. pH-modified moisturizer and standard moisturizer were applied to half body for 6 weeks.
RESULTS: A total of 6 (16.7%) males and 30 (83.3%) females participated. Skin pH reductions from week 0, week 2 and 6 were significant at the forearms (5.315 [0.98] to 4.85 [0.54] to 5.04 [0.78], p=0.02) and abdomen (5.25 [1.01], 4.82 [0.64], 5.01 [0.59], p=0.00) but not at the shins (5.01 [0.80], 4.76 [0.49], 4.85 [0.79], p=0.09) with pH-modified moisturizer. Transepidermal water loss (TEWL) at the forearms decreased (4.60 [2.55] to 3.70 [3.10] to 3.00 [3.55], p=0.00), abdomen (3.90 [2.90] to 2.40 [3.45] to 2.70 [2.25], p=0.046). SCORAD improved from 14.1±12.75 to 10.5±13.25 to 7±12.25, p=0.00. In standard moisturizer group, pH reductions were significant at the forearms (5.29 [0.94] to 4.84 [0.55] to 5.02 [0.70], p=0.00) and abdomen (5.25 [1.09], 4.91 [0.63], 5.12 [0.66], p=0.00). TEWL at the forearm were (4.80 [2.95], 4.10 [2.15], 4.60 [3.40], p=0.67), shins (3.80 [1.40], 3.50 [2.35], 4.00 [2.50], p=0.91) and abdomen (3.70 [2.45], 4.10 [3.60], 3.40 [2.95], p=0.80). SCORAD improved from 14.2±9.1 to 10.9±10.65 to 10.5±11, p=0.00. Reduction in pH was observed with both moisturizers while TEWL significantly improved with pH-modified moisturizer. pH-modified moisturizer resulted in greater pH, TEWL and SCORAD improvements however the differences were not significant from standard moisturizer.
STUDY LIMITATION: Skin hydration was not evaluated.
CONCLUSION: Moisturization is beneficial for atopic dermatitis; use of physiologically compatible pH moisturizer is promising.
AIMS: The aims of this study were to determine the efficacy of rectal diclofenac in preventing PEP and to evaluate any adverse events.
METHODS: This was a randomized, open-label, two-arm, prospective clinical trial. Only patients at high risk of developing PEP were recruited. They received 100 mg rectal diclofenac or no intervention immediately after ERCP. The patients were reviewed 30 days after discharge to evaluate any adverse event.
RESULTS: Among 144 recruited patients, 69 (47.9%) received diclofenac and 75 (52.1%) had no intervention. Eleven patients (7.6%) developed PEP, in which seven were from the diclofenac group and four were in the control group. Eight cases of PEP (5.5%) were mild and three cases (2.1%) were moderate. The differences in pancreatitis incidence and severity between both groups were not statistically significant. There were 11 adverse events reported. Clinically significant bleeding happened in four patients (2.8%): one from the diclofenac group and three from the control group. Other events included cholangitis: two patients (2.9%) from the diclofenac group and four (5.3%) from the control group. One patient from the diclofenac group (1.4%) had a perforation which was treated conservatively.
CONCLUSIONS: In summary, prophylactic rectal diclofenac did not significantly decrease the incidence of PEP among patients at high risk for developing PEP. However, the administration of diclofenac was fairly safe with few clinical adverse events.
METHODOLOGY: This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken.
RESULTS: Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS.
CONCLUSION: TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienol concentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.
METHODS: This study encompassed children born in the Auckland region (New Zealand) with a newborn screen TSH level of 8 to 14 mIU/L blood, age 6.9 to 12.6 years at assessment, and their siblings. Thyroid function tests (serum TSH and free thyroxine) and neurocognitive assessments were performed, including IQ via the Wechsler Intelligence Scale for Children, fourth edition.
RESULTS: Ninety-six mTSHe individuals were studied, including 67 children recruited with 75 sibling controls. Mean mTSHe newborn TSH level was 10.1 mIU/L blood and 2.4 mIU/L at assessment (range, 0.8-7.0 mIU/L, serum). Although higher newborn TSH levels in the mTSHe group correlated with lower full-scale IQ scores (r = 0.25; P = .040), they were not associated with the magnitude of the IQ difference within sibling pairs (P = .56). Cognitive scores were similar for mTSHe and controls (full-scale IQ 107 vs 109; P = .36), with a minor isolated difference in motor coordination scores.
CONCLUSIONS: Our data do not suggest long-term negative effects of neonatal mild TSH elevation. TSH elevation below the screen threshold appears largely transient, and midchildhood neurocognitive performance of these children was similar to their siblings. We propose that associations between neonatal mild TSH elevation and IQ are due to familial confounders. We caution against the practice of reducing screening CH cutoffs to levels at which the diagnosis may not offer long-term benefit for those detected.