Results: We tested the isolated bacteria using a selection of antibiotics. The results showed that both the number of antibiotic resistant strains and resistance level were higher in humans than NHPs. Overall, the composition of gut microbiome and pattern of antibiotic resistance showed that there was higher similarity between MF and TC, the two NHPs, than with HS. In addition, samples with higher levels of antibiotic resistance showed lower bacterial richness. Homo sapiens had the lowest bacterial diversity and yet it had higher abundance of Bacteroides. In contrast, NHPs displayed higher bacterial richness and greater prevalence of Firmicutes such as Ruminococceae and Oscillospira.
Conclusion: Higher antibiotic susceptibility in NHPs is likely related to low direct exposure to antibiotics. The lack of resistance may also suggest limited antimicrobial resistance transmission between humans and NHP. Nonetheless, continued monitoring over a long period will help mitigate the risk of anthropozoonosis and zooanthroponosis.
HYPOTHESIS/OBJECTIVES: To determine the in vitro interaction of ionophores (narasin or monensin) with antimicrobial adjuvants (N-acetylcysteine (NAC), Tris-EDTA or disodium EDTA) against bacterial strains representing pathogens associated with canine otitis externa (OE).
ANIMAL/ISOLATES: American Type Culture Collection (ATCC) strains Staphylococcus aureus 29213, Pseudomonas aeruginosa 27853 and P. aeruginosa biofilm producer PAO1, and a clinical isolate of Proteus mirabilis from a case of canine OE were tested.
METHODS AND MATERIALS: A 2D microdilution checkerboard method was used, allowing calculation of fractional inhibitory concentration index (FICI), dose reduction index (DRI) and plotting of isobolograms.
RESULTS: The combination of narasin with either Tris-EDTA or disodium EDTA produced additive effects (FICI = 0.75) against P. aeruginosa ATCC 27853 and P. aeruginosa biofilm producer ATCC PAO1. An additive effect (FICI = 0.53-0.75) was found against S. aureus ATCC 29213 when narasin or monensin were combined with NAC. The highest DRI (32-fold) was found with monensin/NAC where the MIC of monensin was reduced from 4 to 0.125 μg/mL.
CONCLUSIONS AND CLINICAL IMPORTANCE: The combination of narasin with Tris-EDTA or disodium EDTA is a promising strategy to inhibit the intrinsic resistance elements of Gram-negative bacteria. These novel combinations potentially could be useful as a multimodal approach to treat mixed infections in canine OE.
OBJECTIVES: The study was undertaken to evaluate the possibility to isolate bacteriolytic bacteriophages against S.aureus from raw sewage water and examine their efficacy as antimicrobial agents in vitro.
METHODS: Bacteriophages were isolated from the raw sewage using the agar overlay method. Isolated bacteriophages were plaque purified to obtain homogenous bacteriophage isolates. The host range of the bacteriophages was determined using the spot test assay against the 25 MRSA and 36 MSSA isolates obtained from the Sarawak General Hospital. Staphylococcus saprophyticus, Staphylococcus sciuri and Staphylococcus xylosus were included as non-SA controls. The identity of the bacteriophages was identified via Transmission Electron Microscopy and genomic size analysis. Their stability at different pH and temperature were elucidated.
RESULTS: A total of 10 lytic bacteriophages infecting S.aureus were isolated and two of them namely ΦNUSA-1 and ΦNUSA-10 from the family of Myoviridae and Siphoviridae respectively exhibited exceptionally broad host range against >80% of MRSA and MSSA tested. Both bacteriophages were specific to S.aureus and stable at both physiologic pH and temperature.
CONCLUSION: This study demonstrated the abundance of S.aureus specific bacteriophages in raw sewage. Their high virulence against both MSSA and MRSA is an excellent antimicrobial characteristic which can be exploited for bacteriophage therapy against MRSA.
RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.
CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.
KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.
METHODS: Hence, the evaluation of the synergistic activity of PLEAF and ampicillin against MRSA local isolate was conducted with scanning electron microscopy (SEM).
RESULTS: The combinational effect of PLEAF fraction and ampicillin exhibited significant antibacterial activity against MRSA. Bacterial cells observations showed invagination, impaired cell division, extensive wrinkles, cell shrinkage, the appearance of a rougher cell with fibrous matrix and clustered cells which confirmed the synergistic effect of PLEAF and ampicillin against MRSA local isolate by SEM.
CONCLUSION: Conclusively, the in situ SEM observation proved the synergistic antimicrobial activity between PLEAF fraction and ampicillin to destroy the MRSA resistance bacteria which is an important aspect of PLEAF fraction to be used in the future combinational therapy.