Displaying publications 301 - 320 of 676 in total

Abstract:
Sort:
  1. Jassim SA, Abdulamir AS, Abu Bakar F
    World J Microbiol Biotechnol, 2012 Jan;28(1):47-60.
    PMID: 22806779 DOI: 10.1007/s11274-011-0791-6
    To explore new approaches of phage-based bio-process of specifically pathogenic Escherichia coli bacteria in food products within a short period. One hundred and forty highly lytic designed coliphages were used. Escherichia coli naturally contaminated and Enterohemorrhagic Escherichia coli experimentally inoculated samples of lettuce, cabbage, meat, and egg were used. In addition, experimentally produced biofilms of E. coli were tested. A phage concentration of 10(3) PFU/ml was used for food products immersion, and for spraying of food products, 10(5) PFU/ml of a phage cocktail was used by applying a 20-s optimal dipping time in a phage cocktail. Food samples were cut into pieces and were either sprayed with or held in a bag immersed in lambda buffer containing a cocktail of 140 phages. Phage bio-processing was successful in eliminating completely E. coli in all processed samples after 48 h storage at 4°C. Partial elimination of E. coli was observed in earlier storage periods (7 and 18 h) at 24° and 37°C. Moreover, E. coli biofilms were reduced >3 log cycles upon using the current phage bio-processing. The use of a phage cocktail of 140 highly lytic designed phages proved highly effective in suppressing E. coli contaminating food products. Proper decontamination/prevention methods of pathogenic E. coli achieved in this study can replace the current chemically less effective decontamination methods.
    Matched MeSH terms: Escherichia coli/pathogenicity*; Enterohemorrhagic Escherichia coli/pathogenicity
  2. Tee TS, Kamalanathan M, Suan KA, Chun SS, Ming HT, Yasin RM, et al.
    Am J Trop Med Hyg, 1999 Jul;61(1):73-7.
    PMID: 10432060
    The seroprevalence of Orientia tsutsugamushi, Rickettsia typhi, and TT118 spotted fever group (SFG) rickettsiae in 300 rubber estate workers in Slim River, Malaysia was determined in December 1996 and March 1997. In December, which was the wet season, 23.3%, 3.0%, and 57.3% of the population had antibodies detected against the three rickettsiae, respectively. The highest seropositive rate of 40% was detected for single infection with SFG rickettsiae, followed by a rate of 15.3% for both O. tsutsugamushi and SFG rickettsiae among the rubber estate workers. Subjects less than 21 years old had a lower seroprevalence of SFG rickettsiae compared with the other age groups. Indians had a higher seroprevalence of O. tsutsugamushi compared with other ethnic groups. Rubber tappers had a higher seroprevalence of SFG rickettsiae compared with other occupational groups. During the dry season in March 1997, there was a significant increase in the seroprevalence of R. typhi. The seroconversion rates for IgM against O. tsutsugamushi, R. typhi, and SFG rickettsiae were 5.7%, 12.3%, and 15.1%, respectively, during the four-month period. Significant variations of antibody titers towards the three rickettsiae was noted among subjects who were bled twice. This suggests a significant and continual exposure of rubber estate workers to the three rickettsiae.
    Matched MeSH terms: Orientia tsutsugamushi/pathogenicity*; Rickettsia typhi/pathogenicity*
  3. Nisar M, Khan SA, Qayum M, Khan A, Farooq U, Jaafar HZ, et al.
    Molecules, 2016 Mar 25;21(4):411.
    PMID: 27023506 DOI: 10.3390/molecules21040411
    The fluoroquinolone antibacterial drug ciprofloxacin (cip) has been used to cap metallic (silver and gold) nanoparticles by a robust one pot synthetic method under optimized conditions, using NaBH₄ as a mild reducing agent. Metallic nanoparticles (MNPs) showed constancy against variations in pH, table salt (NaCl) solution, and heat. Capping with metal ions (Ag/Au-cip) has significant implications for the solubility, pharmacokinetics and bioavailability of fluoroquinolone molecules. The metallic nanoparticles were characterized by several techniques such as ultraviolet visible spectroscopy (UV), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods. The nanoparticles synthesized using silver and gold were subjected to energy dispersive X-ray tests in order to show their metallic composition. The NH moiety of the piperazine group capped the Ag/Au surfaces, as revealed by spectroscopic studies. The synthesized nanoparticles were also assessed for urease inhibition potential. Fascinatingly, both Ag-cip and Au-cip NPs exhibited significant urease enzyme inhibitory potential, with IC50 = 1.181 ± 0.02 µg/mL and 52.55 ± 2.3 µg/mL, compared to ciprofloxacin (IC50 = 82.95 ± 1.62 µg/mL). MNPs also exhibited significant antibacterial activity against selected bacterial strains.
    Matched MeSH terms: Bacillus subtilis/pathogenicity; Klebsiella pneumoniae/pathogenicity; Staphylococcus aureus/pathogenicity
  4. Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S
    Mol Biol Rep, 2021 Jun;48(6):5121-5133.
    PMID: 34169395 DOI: 10.1007/s11033-021-06509-4
    The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
    Matched MeSH terms: Human papillomavirus 18/pathogenicity; Human papillomavirus 16/pathogenicity; Alphapapillomavirus/pathogenicity
  5. Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN
    Infect Genet Evol, 2021 Sep;93:104944.
    PMID: 34052418 DOI: 10.1016/j.meegid.2021.104944
    Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.
    Matched MeSH terms: Coronavirus/pathogenicity*; Coronavirus OC43, Human/pathogenicity; Middle East Respiratory Syndrome Coronavirus/pathogenicity
  6. Rouffaer LO, Lens L, Haesendonck R, Teyssier A, Hudin NS, Strubbe D, et al.
    PLoS One, 2016;11(5):e0155366.
    PMID: 27168186 DOI: 10.1371/journal.pone.0155366
    In recent decades major declines in urban house sparrow (Passer domesticus) populations have been observed in north-western European cities, whereas suburban and rural house sparrow populations have remained relatively stable or are recovering from previous declines. Differential exposure to avian pathogens known to cause epidemics in house sparrows may in part explain this spatial pattern of declines. Here we investigate the potential effect of urbanization on the development of a bacterial pathogen reservoir in free-ranging house sparrows. This was achieved by comparing the prevalence of Salmonella enterica subspecies enterica serotype Typhimurium in 364 apparently healthy house sparrows captured in urban, suburban and rural regions across Flanders, Belgium between September 2013 and March 2014. In addition 12 dead birds, received from bird rescue centers, were necropsied. The apparent absence of Salmonella Typhimurium in fecal samples of healthy birds, and the identification of only one house sparrow seropositive for Salmonella spp., suggests that during the winter of 2013-2014 these birds did not represent any considerable Salmonella Typhimurium reservoir in Belgium and thus may be considered naïve hosts, susceptible to clinical infection. This susceptibility is demonstrated by the isolation of two different Salmonella Typhimurium strains from two of the deceased house sparrows: one DT99, typically associated with disease in pigeons, and one DT195, previously associated with a passerine decline. The apparent absence (prevalence: <1.3%) of a reservoir in healthy house sparrows and the association of infection with clinical disease suggests that the impact of Salmonella Typhimurium on house sparrows is largely driven by the risk of exogenous exposure to pathogenic Salmonella Typhimurium strains. However, no inference could be made on a causal relationship between Salmonella infection and the observed house sparrow population declines.
    Matched MeSH terms: Salmonella typhimurium/pathogenicity*
  7. Kuan CS, Yew SM, Toh YF, Chan CL, Lim SK, Lee KW, et al.
    PLoS One, 2015;10(12):e0145932.
    PMID: 26716988 DOI: 10.1371/journal.pone.0145932
    Peritonitis is the leading complication of peritoneal dialysis, which is primarily caused by bacteria rather than fungi. Peritonitis is responsible for approximately 18% of the infection-related mortality in peritoneal dialysis patients. In this paper, we report the isolation of a rare fungus, Quambalaria cyanescens, from the peritoneal fluid of a man after he switched from continuous ambulatory peritoneal dialysis to nocturnal intermittent peritoneal dialysis. Based on the morphological examination and multigene phylogeny, the clinical isolate was confirmed as Q. cyanescens. This pathogen exhibited low sensitivity to all tested echinocandins and 5-flucytosine. Interestingly, morphological characterization revealed that Q. cyanescens UM 1095 produced different pigments at low temperatures (25°C and 30°C) on various culture media. It is important to monitor the emergence of this rare fungus as a potential human pathogen in the tropics. This study provides insight into Q. cyanescens UM 1095 phenotype profiles using a Biolog phenotypic microarray (PM). Of the 760 nutrient sources tested, Q. cyanescens UM 1095 utilized 42 compounds, and the fungus can adapt to a broad range of osmotic and acidic environments. To our knowledge, this is the first report of the isolation of Q. cyanescens from peritoneal fluid, revealing this rare fungus as a potential human pathogen that may be misidentified using conventional methods. The detailed morphological, molecular and phenotypic characterization of Q. cyanescens UM 1095 provides the basis for future studies on its biology, lifestyle, and potential pathogenicity.
    Matched MeSH terms: Basidiomycota/pathogenicity*
  8. Khor WC, Puah SM, Tan JA, Puthucheary SD, Chua KH
    PLoS One, 2015;10(12):e0145933.
    PMID: 26710336 DOI: 10.1371/journal.pone.0145933
    Gram-negative bacilli of the genus Aeromonas are primarily inhabitants of the aquatic environment. Humans acquire this organism from a wide range of food and water sources as well as during aquatic recreational activities. In the present study, the diversity and distribution of Aeromonas species from freshwater lakes in Malaysia was investigated using glycerophospholipid-cholesterol acyltransferase (GCAT) and RNA polymerase sigma-factor (rpoD) genes for speciation. A total of 122 possible Aeromonas strains were isolated and confirmed to genus level using the API20E system. The clonality of the isolates was investigated using ERIC-PCR and 20 duplicate isolates were excluded from the study. The specific GCAT-PCR identified all isolates as belonging to the genus Aeromonas, in agreement with the biochemical identification. A phylogenetic tree was constructed using the rpoD gene sequence and all 102 isolates were identified as: A. veronii 43%, A. jandaei 37%, A. hydrophila 6%, A. caviae 4%, A. salmonicida 2%, A. media 2%, A. allosaccharophila 1%, A. dhakensis 1% and Aeromonas spp. 4%. Twelve virulence genes were present in the following proportions--exu 96%, ser 93%, aer 87%, fla 83%, enolase 70%, ela 62%, act 54%, aexT 33%, lip 16%, dam 16%, alt 8% and ast 4%, and at least 2 of these genes were present in all 102 strains. The ascV, aexU and hlyA genes were not detected among the isolates. A. hydrophila was the main species containing virulence genes alt and ast either present alone or in combination. It is possible that different mechanisms may be used by each genospecies to demonstrate virulence. In summary, with the use of GCAT and rpoD genes, unambiguous identification of Aeromonas species is possible and provides valuable data on the phylogenetic diversity of the organism.
    Matched MeSH terms: Aeromonas/pathogenicity
  9. Henry Sum MS
    Biomed Res Int, 2015;2015:695283.
    PMID: 25705678 DOI: 10.1155/2015/695283
    The role of the cytoskeleton, actin, and microtubules were examined during the process of Japanese encephalitis (JEV) infection in a human neuroblastoma cell line, IMR32. Cytochalasin D and nocodazole were used to depolymerise the cellular actin and microtubules, respectively, in order to study the effect of JEV infection in the cell. This study shows that depolymerisation of the actin cytoskeleton at early process of infection inhibits JEV infection in the cell; however infection was not inhibited when depolymerisation occurred at the later stage of infection. The microtubules, on the other hand, are required at 2 points in infection. The antigen production in the cells was inhibited when the infected cells were treated at time up to 2 hours after inoculation and there was no significant effect at later times, while the viable virus released continued to be affected until 10 hours after inoculation. In conclusion, infection of JEV in IMR32 cells required actin to facilitate early process in infection and the microtubular network is utilised as the transport system to the virus replication site and the release of mature virus.
    Matched MeSH terms: Encephalitis Virus, Japanese/pathogenicity*
  10. Mehrbod P, Omar AR, Hair-Bejo M, Haghani A, Ideris A
    Biomed Res Int, 2014;2014:872370.
    PMID: 25478576 DOI: 10.1155/2014/872370
    The influenza virus (IV) is known to be a resistant virus with frequent mutations, causing severe respiratory diseases in the upper respiratory system. Public health concerns about clinical efficacy of all conventional drugs are ambiguous; therefore, finding additional therapeutic agents is critical to prevent and control influenza outbreaks. Influenza is associated with the induction of proinflammatory cytokines. Scientists have reported that anti-inflammatory drugs, with pleiotropic effects, reduce the burden of severe influenza diseases. Therefore, statins, which are cardioprotective drugs with anti-inflammatory and immunomodulatory effects, may help patients suffering from influenza virus (IV). This review delineates the potential use of statins as an alternative therapy in treating influenza related illness.
    Matched MeSH terms: Orthomyxoviridae/pathogenicity*
  11. Mohamed Ismail NA, Wan Abd Rahim WE, Salleh SA, Neoh HM, Jamal R, Jamil MA
    ScientificWorldJournal, 2014;2014:436975.
    PMID: 25587564 DOI: 10.1155/2014/436975
    Malaysia a dengue endemic country with dengue infections in pregnancy on the rise. The present study was aimed at determining dengue seroprevalence (IgG or IgM) during pregnancy and its neonatal transmission in dengue seropositive women.
    Matched MeSH terms: Dengue Virus/pathogenicity
  12. Tan AH, Mahadeva S, Marras C, Thalha AM, Kiew CK, Yeat CM, et al.
    Parkinsonism Relat Disord, 2015 Mar;21(3):221-5.
    PMID: 25560322 DOI: 10.1016/j.parkreldis.2014.12.009
    BACKGROUND: Some studies have suggested that chronic Helicobacter pylori (HP) infection can aggravate the neurodegenerative process in Parkinson's disease (PD), and targeted intervention could potentially modify the course of this disabling disease. We aimed to study the impact of HP infection on motor function, gastrointestinal symptoms, and quality of life in a large cohort of PD patients.
    METHODS: 102 consecutive PD patients underwent (13)C urea breath testing and blinded evaluations consisting of the Unified Parkinson's Disease Rating Scale (UPDRS) including "On"-medication motor examination (Part III), objective and quantitative measures of bradykinesia (Purdue Pegboard and timed gait), Leeds Dyspepsia Questionnaire, and PDQ-39 (a health-related quality of life questionnaire).
    RESULTS: 32.4% of PD patients were HP-positive. HP-positive patients were older (68.4 ± 7.3 vs. 63.8 ± 8.6 years, P = 0.009) and had worse motor function (UPDRS Part III 34.0 ± 13.0 vs. 27.3 ± 10.0, P = 0.04; Pegboard 6.4 ± 3.3 vs. 8.0 ± 2.7 pins, P = 0.04; and timed gait 25.1 ± 25.4 vs. 15.5 ± 7.6 s, P = 0.08). In the multivariate analysis, HP status demonstrated significant main effects on UPDRS Part III and timed gait. The association between HP status and these motor outcomes varied according to age. Gastrointestinal symptoms and PDQ-39 Summary Index scores did not differ between the two groups.
    CONCLUSIONS: This is the largest cross-sectional study to demonstrate an association between HP positivity and worse PD motor severity.
    KEYWORDS: Gastrointestinal dysfunction; Helicobacter pylori; Parkinson's disease
    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  13. Hage E, Huzly D, Ganzenmueller T, Beck R, Schulz TF, Heim A
    J Infect, 2014 Nov;69(5):490-9.
    PMID: 24975176 DOI: 10.1016/j.jinf.2014.06.015
    Between 2005 and 2013 six severe pneumonia cases (all requiring mechanical ventilation, two fatal outcomes) caused by human adenovirus type 21 (HAdV-B21) were observed in Germany. So far, HAdV-B21 was mainly associated with non-severe upper and lower respiratory tract infections. However, a few highly virulent HAdV types, e.g. HAdV-B14p1, were previously associated with severe, fatal pneumonia. Complete genomic sequences of the German HAdV-B21 pneumonia isolates formed a single phylogenetic cluster with very high sequence identity (≥ 99.897%). Compared to the HAdV-B21 prototype (only 99.319% identity), all isolates had a unique 15 amino acid deletion and a 2 amino acid insertion in the RGD loop of the penton base which may affect binding to the secondary receptor on the host cells. Moreover, a recombinant E4 gene region derived of HAdV-B3 was identified by bootscan analysis. Thus, the highly virulent, pneumotropic HAdV-B21 was denominated as subtype 21a. Surprisingly, there was 99.963% identity with agent Y/SIBU97 (only 13.4 kb available in GenBank of the 35.4 kb genome) which was associated with 10 fatalities due to cardiopulmonary failure in Sarawak, Malaysia, in 1997. In conclusion, a HAdV-B21 subtype (21a) associated with severe pneumonia in Germany was phylogenetically linked to an adenovirus isolated in Malaysia.
    Matched MeSH terms: Adenoviruses, Human/pathogenicity
  14. Goh SY, Tan WS, Khan SA, Chew HP, Abu Kasim NH, Yin WF, et al.
    Sensors (Basel), 2014;14(5):8940-9.
    PMID: 24854358 DOI: 10.3390/s140508940
    Bacteria realize the ability to communicate by production of quorum sensing (QS) molecules called autoinducers, which regulate the physiological activities in their ecological niches. The oral cavity could be a potential area for the presence of QS bacteria. In this study, we report the isolation of a QS bacterial isolate C10B from dentine caries. Preliminary screening using Chromobacterium violaceum CV026 biosensor showed that isolate C10B was able to produce N-acylhomoserine lactones (AHLs). This bacterium was further identified as a member of Burkholderia, an opportunistic pathogen. The isolated Burkholderia sp. was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL), N-decanoyl-L-homoserine lactone (C10-HSL) and N-dodecanoyl-L-homoserine lactone (C12-HSL).
    Matched MeSH terms: Burkholderia/pathogenicity
  15. Chandramathi S, Suresh K, Sivanandam S, Kuppusamy UR
    PLoS One, 2014;9(5):e94567.
    PMID: 24788756 DOI: 10.1371/journal.pone.0094567
    Stress alters the oxidant-antioxidant state and immune cell responses which disrupts its function to combat infection. Blastocystis hominis, a common intestinal protozoan has been reported to be opportunistic in immunocompromised patients namely cancer. B. hominis infectivity in other altered immune system conditions especially stress is unknown. We aimed to demonstrate the stress effects towards the susceptibility and pathogenicity of B. hominis infection.
    Matched MeSH terms: Blastocystis hominis/pathogenicity*
  16. Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J
    J Proteomics, 2014 Jun 25;106:205-20.
    PMID: 24742602 DOI: 10.1016/j.jprot.2014.04.005
    Colony morphology variation is a characteristic of Burkholderia pseudomallei primary clinical isolates, associated with variations in expression of virulence factors. Here, we performed comparative investigations on adhesion, invasion, plaque-forming abilities and protein profiles of B. pseudomallei wild-type (WT) and a small colony variant (SCV). The percentage of SCV adherence to A549 cells was significantly higher (2.73%) than WT (1.91%). In contrast, WT was significantly more efficient (0.63%) than SCV (0.31%) in invasiveness and in inducing cellular damage. Using 2-DE and MALDI TOF/TOF, 263 and 258 protein spots were detected in WT and SCV, respectively. Comparatively, 49 proteins were differentially expressed in SCV when compared with WT. Of these, 31 proteins were up-regulated, namely, nucleoside diphosphate kinase (Ndk), phosphoglycerate kinase (Pgk), thioredoxin (TrxA), putative ferritin DPS-family DNA-binding protein (DPS) and oxidoreductase (AhpC) that are known to be involved in adhesion, intracellular survival and persistence. However, among the 18 down-regulated proteins, enolase (Eno), elongation factor (EF-Tu) and universal stress-related proteins were associated with invasion and virulence. Differences observed in these protein profiles provide ample clues to their association with the morphotypic and phenotypic characteristics of colony variants, providing additional insights into the potential association of B. pseudomallei colony morphotypes with disease pathogenesis.
    Matched MeSH terms: Burkholderia pseudomallei/pathogenicity
  17. Choong OK, Mehrbod P, Tejo BA, Omar AR
    Biomed Res Int, 2014;2014:654712.
    PMID: 24707494 DOI: 10.1155/2014/654712
    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 10(14) in the virus-inoculated cells to 10(9) in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection.
    Matched MeSH terms: Coronavirus, Feline/pathogenicity*
  18. Lin JY, Shih SR
    J Biomed Sci, 2014;21:18.
    PMID: 24602216 DOI: 10.1186/1423-0127-21-18
    Enterovirus 71 (EV71) is a member of Picornaviridae that causes mild and self-limiting hand, foot, and mouth disease (HFMD). However, EV71 infections can progress to polio-like paralysis, neurogenic pulmonary edema, and fatal encephalitis in infants and young children. Large EV71 outbreaks have been reported in Taiwan, China, Japan, Malaysia, Singapore, and Australia. This virus is considered a critical emerging public health threat. EV71 is an important crucial neurotropic enterovirus for which there is currently no effective antiviral drug or vaccine. The mechanism by which EV71 causes severe central nervous system complications remains unclear. The interaction between the virus and the host is vital for viral replication, virulence, and pathogenicity. SCARB2 or PSGL-1 receptor binding is the first step in the development of viral infections, and viral factors (e.g., 5' UTR, VP1, 3C, 3D, 3' UTR), host factors and environments (e.g., ITAFs, type I IFN) are also involved in viral infections. The tissue tropism and pathogenesis of viruses are determined by a combination of several factors. This review article provides a summary of host and virus factors affecting cell and tissue tropism and the pathogenesis of enteroviruses.
    Matched MeSH terms: Enterovirus A, Human/pathogenicity*
  19. Lemoh C, Ryan CE, Sekawi Z, Hearps AC, Aleksic E, Chibo D, et al.
    PLoS One, 2013;8(12):e84008.
    PMID: 24391866 DOI: 10.1371/journal.pone.0084008
    African-born Australians are a recognised "priority population" in Australia's Sixth National HIV/AIDS Strategy. We compared exposure location and route for African-born people living with HIV (PLHIV) in Victoria, Australia, with HIV-1 pol subtype from drug resistance assays and geographical origin suggested by phylogenetic analysis of env gene. Twenty adult HIV positive African-born Victorian residents were recruited via treating doctors. HIV exposure details were obtained from interviews and case notes. Viral RNA was extracted from participant stored plasma or whole blood. The env V3 region was sequenced and compared to globally representative reference HIV-1 sequences in the Los Alamos National Library HIV Database. Twelve participants reported exposure via heterosexual sex and two via iatrogenic blood exposures; four were men having sex with men (MSM); two were exposed via unknown routes. Eight participants reported exposure in their countries of birth, seven in Australia, three in other countries and two in unknown locations. Genotype results (pol) were available for ten participants. HIV env amplification was successful in eighteen cases. HIV-1 subtype was identified in all participants: eight both pol and env; ten env alone and two pol alone. Twelve were subtype C, four subtype B, three subtype A and one subtype CRF02_AG. Reported exposure location was consistent with the phylogenetic clustering of env sequences. African Australians are members of multiple transnational social and sexual networks influencing their exposure to HIV. Phylogenetic analysis may complement traditional surveillance to discern patterns of HIV exposure, providing focus for HIV prevention programs in mobile populations.
    Matched MeSH terms: HIV-1/pathogenicity*
  20. Abdulsalam AM, Ithoi I, Al-Mekhlafi HM, Al-Mekhlafi AM, Ahmed A, Surin J
    PLoS One, 2013;8(12):e84372.
    PMID: 24376805 DOI: 10.1371/journal.pone.0084372
    BACKGROUND: Blastocystis is a genetically diverse and a common intestinal parasite of humans with a controversial pathogenic potential. This study was carried out to identify the Blastocystis subtypes and their association with demographic and socioeconomic factors among outpatients living in Sebha city, Libya.

    METHODS/FINDINGS: Blastocystis in stool samples were cultured followed by isolation, PCR amplification of a partial SSU rDNA gene, cloning, and sequencing. The DNA sequences of isolated clones showed 98.3% to 100% identity with the reference Blastocystis isolates from the Genbank. Multiple sequence alignment showed polymorphism from one to seven base substitution and/or insertion/deletion in several groups of non-identical nucleotides clones. Phylogenetic analysis revealed three assemblage subtypes (ST) with ST1 as the most prevalent (51.1%) followed by ST2 (24.4%), ST3 (17.8%) and mixed infections of two concurrent subtypes (6.7%).

    BLASTOCYSTIS: ST1 infection was significantly associated with female (P = 0.009) and low educational level (P = 0.034). ST2 was also significantly associated with low educational level (P= 0.008) and ST3 with diarrhoea (P = 0.008).

    CONCLUSION: Phylogenetic analysis of Libyan Blastocystis isolates identified three different subtypes; with ST1 being the predominant subtype and its infection was significantly associated with female gender and low educational level. More extensive studies are needed in order to relate each Blastocystis subtype with clinical symptoms and potential transmission sources in this community.

    Matched MeSH terms: Blastocystis/pathogenicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links