Displaying publications 321 - 340 of 566 in total

Abstract:
Sort:
  1. Rahat MR, Mimi HA, Islam SA, Kamruzzaman M, Ferdous J, Begum M, et al.
    Appl Radiat Isot, 2023 Dec;202:111047.
    PMID: 37782983 DOI: 10.1016/j.apradiso.2023.111047
    Many minerals and compounds show thermoluminescence (TL) properties but only a few of them can meet the requirements of an ideal dosimeter. Several phosphate materials have been studied for low-dose dosimetryin recent times. Among the various phosphates, ABPO4-type material shows interesting TL properties. In this study, an ABPO4-type (A = Lithium, B=Calcium) phosphor is synthesized using a modified solid-state diffusion method. Temperature is maintained below 800 °C in every step of phosphor preparation to obtain the pure phase of Lithium calcium phosphate (LiCaPO4). The purpose of this work is to synthesize LiCaPO4 using a simple method, examine its structural and luminescence properties in order to gain a deeper understanding of its TL characteristics. The general TL properties, such as TL glow curve, dose linearity, sensitivity, and fading, are investigated. Additionally, this study aims to determine various kinetic parameters through Glow Curve Deconvolution (GCD) method using the Origin Lab software together with the Chen model. XRD analysis confirmed the phase purity of the phosphor with a rhombohedral structure. Lattice parameters, unit cell volume, grain size, dislocated density, and microstrain were also calculated from XRD data. Raman analysis and Fourier Transform Infrared analysis were used to collect information about molecular bonds, vibrations, identity, and structure of the phosphor. To investigate TL properties and associated kinetic parameters, the phosphor was irradiated with 6.0 MV (photon energy) and 6.0 MeV (electron energy) from a linear accelerator for doses ranging from 0.5 Gy to 6.0 Gy. For both photon and electron energy, TL glow curves have two identical peaks near 200 °C and 240 °C.The TL glow curves for 0.5 Gy-6 Gy are deconvoluted, then fitted with the appropriate model and then calculated the kinetic parameters. Kinetic parameters such as geometric factor (μg), order of kinetics, activation energy (E), and frequency factor (s) are obtained from Chen's peak shape method. The dose against the TL intensity curve shows that the response is almost linear in the investigated dose range. For photon and electron energy, the phosphor is found to be the most sensitive at 2.0 Gy and 4.0 Gy, respectively. The phosphor shows a low fading and after 28 days of exposure, it shows a signal loss of better than 3%. The studied TL properties suggest the suitability of LiCaPO4 in radiation dosimetry and associated fields.
  2. Xiao S, Jian-Feng L, Fang-Fang WAN, Xuan YU, Xiaoxiao S, Lu-Yao HAN, et al.
    Mar Environ Res, 2022 Dec;182:105727.
    PMID: 36334558 DOI: 10.1016/j.marenvres.2022.105727
    Red tide caused severe impacts on marine fisheries, ecology, economy and human life safety. The formation mechanism of the red tide is rather complicated; thus, red tide prediction and forecasting have long been a research hotspot around the globe. This study collected ocean monitoring data before and after the occurrence of red tides in Xiamen sea area from 2009 to 2017. The Pearson correlation coefficient method was used to obtain the associated factors of red tide occurrence, including water temperature, saturated dissolved oxygen, dissolved oxygen, chlorophyll-aand potential of hydrogen. Then, we built a short-time red tide prediction model based on the combination of multiple feature factors. chlorophyll-a, dissolved oxygen, saturated dissolved oxygen, potential of hydrogen, water temperature, salinity, turbidity, wind speed, wind direction and Air pressure were used as the input variables, building a short-time prediction model based on the combination of multiple feature factors to forecast red tide in the next 6 h by using the monitoring data. The accuracy of different forecast models with different feature combinations was compared. Results show that the distinguishing factors which have the most significant influence on red tide prediction in Xiamen are chlorophyll-a, dissolved oxygen, saturated dissolved oxygen, potential of hydrogen, and water temperature. the convergence speed of the Gated Recurrence Unit (GRU) prediction model based on the main feature factor proposed in this paper was faster and obtained the expected result, and the accuracy rates of the buoys are above 92%. The research shows the feasibility to use GRU network model to predict the occurrence of red tide with multi-feature factors as input parameters. the paper provides an effective method for the red tide early warning in Xiamen sea area.
  3. Zubair HT, Bradley DA, Khairina MD, Oresegun A, Basaif A, Othman J, et al.
    Sci Rep, 2023 Jul 24;13(1):11918.
    PMID: 37488183 DOI: 10.1038/s41598-023-39180-9
    We have developed a radioluminescence-based survey meter for use in industries in which there is involvement in naturally occurring radioactive material (NORM), also in support of those needing to detect other weak emitters of radiation. The functionality of the system confronts particular shortcomings of the handheld survey meters that are currently being made use of. The device couples a LYSO:Ce scintillator with a photodetector via a polymer optical fibre waveguide, allowing for "intrinsically safe" inspection within pipework, separators, valves and other such component pieces. The small-diameter optical fibre probe is electrically passive, immune to electromagnetic interference, and chemically inert. The readout circuit is entirely incorporated within a handheld casing housing a silicon photomultiplier (SiPM) detection circuit and a microprocessor circuit connected to an LCD display. A 15 m long flexible PMMA optical fibre waveguide is butt coupled to an ABS plastic probe that retains the LYSO:Ce scintillator. Initial tests have included the use of lab-based mixed gamma-ray sources, measurements being made in concert with a reference conventional GM survey-meter. Characterization, via NORM sources at a decontamination facility, has shown useful sensitivity, covering the dose-rate range 0.10- to 28 µSv h-1 (R-squared 0.966), extending to 80 µSv/h as demonstrated in use of a Cs-137 source. The system is shown to provide an effective tool for detection of radioactivity within hard to access locations, in particular for sources emitting at low radiation levels, down to values that approach background.
  4. Majeed SH, Abdul-Zahra AS, Mutasher DG, Dhahd HA, Fayad MA, Al-Waeli AHA, et al.
    ACS Omega, 2023 Aug 22;8(33):29926-29938.
    PMID: 37636923 DOI: 10.1021/acsomega.2c07900
    In the recent decades, the researchers have been focused on the use of photovoltaic thermal (PVT) systems that provide the best performance and cooling for the photovoltaic panels. In this study, a PVT system consisting of a monocrystalline PV panel and a spiral heat exchanger was connected to an underground heat exchanger that is buried at a depth of 4 m below the surface of the earth. The procedure of the current study can be considered the first of its kind in the Middle East and North Africa region (based on the researchers' knowledge). The study was carried out on agricultural land in Baghdad-Iraq during months of July and August-2022, which are considered the harshest weather conditions for this city. The heat exchanger consists of a copper tube with a length of 21 m and formed in the shape of 3U, and it was buried in the earth and connected with a PVT system. The results of the study showed that the site chosen to bury the heat exchanger (4 m deep) has a stable soil temperature at 22.5 °C. From various volumetric flow rates, a flow rate of 0.18 l/s was selected which is considered the highest flow rate that can show vibration in the PVT system which may harm the system. The practical measurements showed that the largest difference in the surface temperatures of standalone PV and PVT was around 20 °C in favor of the latter. The electrical efficiency of the studied PVT system also increased to outperform the standalone PV system by 127.3%. By comparing the results of the current study with studies of water-cooled PVT systems from the literature, it is clear that the proposed system is feasible and has an acceptable efficiency in such harsh weather conditions tested during the experiment.
  5. Chaichan MT, Kazem HA, Al-Ghezi MKS, Al-Waeli AHA, Ali AJ, Sopian K, et al.
    ACS Omega, 2023 Aug 22;8(33):29910-29925.
    PMID: 37636957 DOI: 10.1021/acsomega.2c07226
    Multiwalled carbon nanotubes (MWCNTs) were employed as added particles for nanofluids in this practical investigation. To identify the most appropriate nanofluid for cooling PVT systems that are functional in the extreme summer environment of Baghdad, the parameters of base fluid, surfactant, and sonication time used for mixing were examined. Water was chosen as the base fluid instead of other potential candidates such as ethylene glycol (EG), propylene glycol (PG), and heat transfer oil (HTO). Thermal conductivity and stability were important thermophysical qualities that were impacted by the chosen parameters. The nanofluid tested in Baghdad city (consisting of 0.5% MWCNTs, water, and CTAB with a sonication period of three and a quarter hours) resulted in a 119.5, 308, and 210% enhancement of thermal conductivity (TC) for water compared with EG, PG, and oil, respectively. In addition, the nanofluid-cooled PVT system had an electrical efficiency that was 88.85% higher than standalone PV technology and 44% higher than water-cooled PVT systems. Moreover, the thermal efficiency of the nanofluid-cooled PVT system was 20% higher than the water-cooled PVT system. Finally, the nanofluid-cooled PVT system displayed the least decrease in electrical efficiency and a greater thermal efficiency even when the PV panel was at its hottest at noon.
  6. Alsalem MA, Alsattar HA, Albahri AS, Mohammed RT, Albahri OS, Zaidan AA, et al.
    J Infect Public Health, 2021 Oct;14(10):1513-1559.
    PMID: 34538731 DOI: 10.1016/j.jiph.2021.08.026
    The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.
  7. Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, et al.
    Nanomaterials (Basel), 2021 Aug 26;11(9).
    PMID: 34578502 DOI: 10.3390/nano11092186
    Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young's modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength. Although a large number of studies have been conducted on these novel materials, there have only been a few reviews published on their mechanical performance in polymer composites. As a result, in this review we have covered some of the key application factors as well as the mechanical properties of CNTs-reinforced polymer composites. Finally, the potential uses of CNTs hybridised with polymer composites reinforced with natural fibres such as kenaf fibre, oil palm empty fruit bunch (OPEFB) fibre, bamboo fibre, and sugar palm fibre have been highlighted.
  8. Nurazzi NM, Asyraf MRM, Khalina A, Abdullah N, Aisyah HA, Rafiqah SA, et al.
    Polymers (Basel), 2021 Feb 22;13(4).
    PMID: 33671599 DOI: 10.3390/polym13040646
    Even though natural fiber reinforced polymer composites (NFRPCs) have been widely used in automotive and building industries, there is still a room to promote them to high-level structural applications such as primary structural component specifically for bullet proof and ballistic applications. The promising performance of Kevlar fabrics and aramid had widely implemented in numerous ballistic and bullet proof applications including for bullet proof helmets, vest, and other armor parts provides an acceptable range of protection to soldiers. However, disposal of used Kevlar products would affect the disruption of the ecosystem and pollutes the environment. Replacing the current Kevlar fabric and aramid in the protective equipment with natural fibers with enhanced kinetic energy absorption and dissipation has been significant effort to upgrade the ballistic performance of the composite structure with green and renewable resources. The vast availability, low cost and ease of manufacturing of natural fibers have grasped the attention of researchers around the globe in order to study them in heavy armory equipment and high durable products. The possibility in enhancement of natural fiber's mechanical properties has led the extension of research studies toward the application of NFRPCs for structural and ballistic applications. Hence, this article established a state-of-the-art review on the influence of utilizing various natural fibers as an alternative material to Kevlar fabric for armor structure system. The article also focuses on the effect of layering and sequencing of natural fiber fabric in the composites to advance the current armor structure system.
  9. Ashkir Z, Samat AHA, Ariga R, Finnigan L, Jermy S, Akhtar MA, et al.
    PMID: 39417278 DOI: 10.1093/ehjci/jeae260
    BACKGROUND: Myocardial disarray, an early feature of hypertrophic cardiomyopathy (HCM) and a substrate for ventricular arrhythmia, is poorly characterised in prehypertrophic sarcomeric variant carriers (SARC+LVH-).

    OBJECTIVES: Using diffusion tensor cardiac magnetic resonance (DT-CMR) we assessed myocardial disarray and fibrosis in both SARC+LVH- and HCM patients and evaluated the relationship between microstructural alterations and electrocardiographic (ECG) parameters associated with arrhythmic risk.

    METHODS: Sixty-two individuals (24 SARC+LVH-, 24 HCM and 14 matched controls) were evaluated with multiparametric CMR including stimulated echo acquisition mode (STEAM) DT-CMR, and blinded quantitative 12-lead ECG analysis.

    RESULTS: Mean diastolic fractional anisotropy (FA) was reduced in HCM compared to SARC+LVH- and controls (0.49±0.05 vs 0.52±0.04 vs 0.53±0.04, p=0.009), even after adjustment for differences in extracellular volume (ECV) (p=0.038). Both HCM and SARC+LVH- had segments with significantly reduced FA relative to controls (54% vs 25% vs 0%, p=0.002). Multiple repolarization parameters were prolonged in HCM and SARC+LVH-, with corrected JT interval (JTc) being most significant (354±42ms vs 356±26ms vs 314±26ms, p=0.002). Among SARC+LVH-, JTc duration correlated negatively with mean FA (r=-0.6, p=0.002). In HCM, the JTc interval showed a stronger association with ECV (r=0.6 p=0.019) than FA (r=-0.1 p=0.72). JTc discriminated SARC+LVH- from controls (Area-under-the-receiver-operator-curve 0.88, CI 0.76-1.00, p<0.001), and in HCM correlated with the ESC HCM sudden cardiac death risk score (r=0.5, p=0.014).

    CONCLUSION: Low diastolic FA, suggestive of myocardial disarray, is present in both SARC+LVH- and HCM. Low FA and raised ECV were associated with repolarization prolongation. Myocardial disarray assessment using DT-CMR and repolarization parameters such as the JTc interval demonstrate significant potential as markers of disease activity in HCM.

  10. Kua BC, Choong FC, Hazreen Nita MK, Muhd Faizul H AH, Bhassu S, Imelda RR, et al.
    Trop Biomed, 2011 Apr;28(1):85-9.
    PMID: 21602773 MyJurnal
    A preliminary survey of parasitic and infectious hypodermal and haematopoietic necrosis virus (IHHNV) infections in giant freshwater prawn from the Damak Sea of Rejang River, Kuching, Sarawak was conducted. Symptoms of black spots/patches on the rostrum, carapace, pleopods or telson were observed in most of the 107 samples collected. Parasitic examination revealed sessiline peritrichs such as (Zoothamnium sp.), nematode larvae, gregarine stage and cocoon of leech with prevalences of 1.2%, 1.2%, 5% and 17% respectively. Under histopathological examination, changes like accumulation of hemocytes around hepatopancreatic tubules due to vibriosis, basophilic intranuclear inclusions in the epithelium and E-cell of hepatopancreatic tubules as a result of HPV were seen through the section. No positive infection of IHHNV was detected in 78 samples. As such, the wild giant freshwater prawns in Damak Sea of Rejang River in Kuching are IHHNV-free though infections of parvo-like virus and bacteria were seen in histopathology.
  11. Suaini NH, Koplin JJ, Ellis JA, Peters RL, Ponsonby AL, Dharmage SC, et al.
    J Steroid Biochem Mol Biol, 2014 Oct;144 Pt B:445-54.
    PMID: 25174667 DOI: 10.1016/j.jsbmb.2014.08.018
    We aimed to investigate the relationship between genetic and environmental exposure and vitamin D status at age one, stratified by ethnicity. This study included 563 12-month-old infants in the HealthNuts population-based study. DNA from participants' blood samples was genotyped using Sequenom MassARRAY MALDI-TOF system on 28 single nucleotide polymorphisms (SNPs) in six genes. Using logistic regression, we examined associations between environmental exposure and SNPs in vitamin D pathway and filaggrin genes and vitamin D insufficiency (VDI). VDI, defined as serum 25-hydroxyvitamin D3(25(OH)D3) level ≤50nmol/L, was measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Infants were stratified by ethnicity determined by parent's country of birth. Infants formula fed at 12 months were associated with reduced odds of VDI compared to infants with no current formula use at 12 months. This association differed by ethnicity (Pinteraction=0.01). The odds ratio (OR) of VDI was 0.29 for Caucasian infants (95% CI, 0.18-0.47) and 0.04 for Asian infants (95% CI, 0.006-0.23). Maternal vitamin D supplementation during pregnancy and/or breastfeeding were associated with increased odds of infants being VDI (OR, 2.39; 95% CI, 1.11-5.18 and OR, 2.5; 95% CI, 1.20-5.24 respectively). Presence of a minor allele for any GC SNP (rs17467825, rs1155563, rs2282679, rs3755967, rs4588, rs7041) was associated with increased odds of VDI. Caucasian infants homozygous (AA) for rs4588 had an OR of 2.49 of being associated with VDI (95% CI, 1.19-5.18). In a country without routine infant vitamin D supplementation or food chain fortification, formula use is strongly associated with a reduced risk of VDI regardless of ethnicity. There was borderline significance for an association between filaggrin mutations and VDI. However, polymorphisms in vitamin D pathway related genes were associated with increased likelihood of being VDI in infancy.
  12. Teh LK, Mohamed NI, Salleh MZ, Rohaizak M, Shahrun NS, Saladina JJ, et al.
    AAPS J, 2012 Mar;14(1):52-9.
    PMID: 22183189 DOI: 10.1208/s12248-011-9313-6
    CYP2D6 plays a major role in the metabolism of tamoxifen, and polymorphism of P-glycoprotein has been associated with resistance of many drug therapies. This study investigates the clinical impact of genetic variants of CYP2D6 and ABCB1 in breast cancer patients treated with tamoxifen. Blood samples from 95 breast cancer patients treated with tamoxifen were collected and genotyped for CYP2D6 and ABCB1 variants using allele-specific PCR method. Recurrence risks were calculated using Kaplan-Meier analysis and compared using the log-rank test. Patients carrying CYP2D6*10/*10 and heterozygous null allele (IM) showed higher risks of developing recurrence and metastasis (OR 13.14; 95% CI 1.57-109.94; P = 0.004) than patients with CYP2D6*1/*1 and *1/*10 genotypes. Patients with homozygous CC genotypes of ABCB1 C3435T showed a shorter time to recurrence. Patients who were CYP2D6 IM and homozygous CC genotype of C3435T have statistically significant higher risks of recurrence (P = 0.002). Similarly, median time to recurrence in these patients was only 12 months (95% CI = 0.79-23.2) compared to those without this combination which was 48 months (95% CI = 14.7-81.2). Patients with CYP2D6 IM and homozygous CC genotype of ABCB1 C3435T have shorter times to recurrence. The results confirmed the findings of previous studies and support FDA recommendation to perform pre-genotyping in patients before the choice of therapy is determined in breast cancer patients.
  13. Kron T, Azhari HA, Voon EO, Cheung KY, Ravindran P, Soejoko D, et al.
    Australas Phys Eng Sci Med, 2015 Sep;38(3):493-501.
    PMID: 26346030 DOI: 10.1007/s13246-015-0373-2
    It was the aim of this work to assess and track the workload, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific region over time. In this third survey since 2008, a structured questionnaire was mailed in 2014 to 22 senior medical physicists representing 23 countries. As in previous surveys the questionnaire covered seven themes: 1 education, training and professional certification, 2 staffing, 3 typical tasks, 4 professional organisations, 5 resources, 6 research and teaching, and 7 job satisfaction. The response rate of 100% is a result of performing a survey through a network, which allows easy follow-up. The replies cover 4841 ROMPs in 23 countries. Compared to 2008, the number of medical physicists in many countries has doubled. However, the number of experienced ROMPs compared to the overall workforce is still small, especially in low and middle income countries. The increase in staff is matched by a similar increase in the number of treatment units over the years. Furthermore, the number of countries using complex techniques (IMRT, IGRT) or installing high end equipment (tomotherapy, robotic linear accelerators) is increasing. Overall, ROMPs still feel generally overworked and the professional recognition, while varying widely, appears to be improving only slightly. Radiation oncology medical physics practice has not changed significantly over the last 6 years in the Asia Pacific Region even if the number of physicists and the number and complexity of treatment techniques and technologies have increased dramatically.
  14. Alawiah A, Bauk S, Marashdeh MW, Nazura MZ, Abdul-Rashid HA, Yusoff Z, et al.
    Appl Radiat Isot, 2015 Oct;104:197-202.
    PMID: 26188687 DOI: 10.1016/j.apradiso.2015.07.011
    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF.
  15. Nurazzi NM, Asyraf MRM, Rayung M, Norrrahim MNF, Shazleen SS, Rani MSA, et al.
    Polymers (Basel), 2021 Aug 13;13(16).
    PMID: 34451248 DOI: 10.3390/polym13162710
    Natural fiber such as bamboo fiber, oil palm empty fruit bunch (OPEFB) fiber, kenaf fiber, and sugar palm fiber-reinforced polymer composites are being increasingly developed for lightweight structures with high specific strength in the automotive, marine, aerospace, and construction industries with significant economic benefits, sustainability, and environmental benefits. The plant-based natural fibers are hydrophilic, which is incompatible with hydrophobic polymer matrices. This leads to a reduction of their interfacial bonding and to the poor thermal stability performance of the resulting fiber-reinforced polymer composite. Based on the literature, the effect of chemical treatment of natural fiber-reinforced polymer composites had significantly influenced the thermogravimetric analysis (TGA) together with the thermal stability performance of the composite structure. In this review, the effect of chemical treatments used on cellulose natural fiber-reinforced thermoplastic and thermosetting polymer composites has been reviewed. From the present review, the TGA data are useful as guidance in determining the purity and composition of the composites' structures, drying, and the ignition temperatures of materials. Knowing the stability temperatures of compounds based on their weight, changes in the temperature dependence is another factor to consider regarding the effectiveness of chemical treatments for the purpose of synergizing the chemical bonding between the natural fiber with polymer matrix or with the synthetic fibers.
  16. Lange B, Khan P, Kalmambetova G, Al-Darraji HA, Alland D, Antonenka U, et al.
    Int J Tuberc Lung Dis, 2017 05 01;21(5):493-502.
    PMID: 28399963 DOI: 10.5588/ijtld.16.0702
    SETTING: Xpert® MTB/RIF is the most widely used molecular assay for rapid diagnosis of tuberculosis (TB). The number of polymerase chain reaction cycles after which detectable product is generated (cycle threshold value, CT) correlates with the bacillary burden.OBJECTIVE To investigate the association between Xpert CT values and smear status through a systematic review and individual-level data meta-analysis.

    DESIGN: Studies on the association between CT values and smear status were included in a descriptive systematic review. Authors of studies including smear, culture and Xpert results were asked for individual-level data, and receiver operating characteristic curves were calculated.

    RESULTS: Of 918 citations, 10 were included in the descriptive systematic review. Fifteen data sets from studies potentially relevant for individual-level data meta-analysis provided individual-level data (7511 samples from 4447 patients); 1212 patients had positive Xpert results for at least one respiratory sample (1859 samples overall). ROC analysis revealed an area under the curve (AUC) of 0.85 (95%CI 0.82-0.87). Cut-off CT values of 27.7 and 31.8 yielded sensitivities of 85% (95%CI 83-87) and 95% (95%CI 94-96) and specificities of 67% (95%CI 66-77) and 35% (95%CI 30-41) for smear-positive samples.

    CONCLUSION: Xpert CT values and smear status were strongly associated. However, diagnostic accuracy at set cut-off CT values of 27.7 or 31.8 would not replace smear microscopy. How CT values compare with smear microscopy in predicting infectiousness remains to be seen.

  17. Putra TA, Hezmee MN, Farhana NB, Hassim HA, Intan-Shameha AR, Lokman IH, et al.
    Vet World, 2016 Sep;9(9):955-959.
    PMID: 27733795
    The One Health (OH) approach, which seeks to bring together human and animal health, is particularly suited to the effective management of zoonotic diseases across both sectors. To overcome professional silos, OH needs to be taught at the undergraduate level. Here, we describe a problem-based learning activity using the OH approach that was conducted outdoors for 3(rd)-year veterinary students in Malaysia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links