OBJECTIVES: To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients.
SEARCH METHODS: The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.
DATA COLLECTION AND ANALYSIS: Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI.
MAIN RESULTS: We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation.
AUTHORS' CONCLUSIONS: Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.
OBJECTIVE: This study aims to evaluate the diagnostic efficacy of abbreviated MRI protocol in detecting breast cancer in screening and diagnostic populations, using histopathology as the reference standard.
MATERIALS AND METHODS: This is a single-centre retrospective cross-sectional study of 134 patients with 198 histologically proven breast lesions who underwent full diagnostic protocol contrast-enhanced breast MRI (FDP-MR) at the University Malaya Medical Centre (UMMC) from 1st January 2018 to 31st December 2019. AB-MR was pre-determined and evaluated with regard to the potential to detect and exclude malignancy from 3 readers of varying radiological experiences. The sensitivity of both AB-MR and FDP-MR were compared using the McNemar test, where both protocols' diagnostic performances were assessed via the receiver operating characteristic (ROC) curve. Inter-observer agreement was analysed using Fleiss Kappa.
RESULT: There were 134 patients with 198 lesions. The average age was 50.9 years old (range 27 - 80). A total of 121 (90%) MRIs were performed for diagnostic purposes. Screening accounted for 9.4% of the cases, 55.6% (n=110) lesions were benign, and 44.4% (n=88) were malignant. The commonest benign and malignant lesions were fibrocystic change (27.3%) and invasive ductal carcinoma (78.4%). The mean sensitivity, specificity, positive predictive value, and negative predictive value for AB-MR were 0.96, 0.57, 0.68 and 0.94, respectively. Both AB-MR and FDP-MR showed excellent diagnostic performance with AUC of 0.88 and 0.96, respectively. The general inter-observer agreement of all three readers for AB-MR was substantial (k=0.69), with fair agreement demonstrated between AB-MR and FDP-MR (k=0.36).
CONCLUSION: The study shows no evidence that the diagnostic efficacy of AB-MR is inferior to FDP-MR. AB-MR, with high sensitivity, has proven its capability in cancer detection and exclusion, especially for biologically aggressive cancers.
METHODS: A cross-sectional study was conducted using validated modified-communication tools; Patient Communication Assessment Instruments (PCAI), Student Communication Assessment Instruments (SCAI) and Clinical Communication Assessment Instruments (CCAI) which included four communication domains. One hundred and seventy-six undergraduate clinical year students were recruited in this study whereby each of them was assessed by a clinical instructor and a randomly selected patient in two settings: Dental Health Education (DHE) and Comprehensive Care (CC) clinic.
RESULTS: Comparing the three perspectives, PCAI yielded the highest scores across all domains, followed by SCAI and CCAI (p
MATERIALS AND METHODS: Candidates shortlisted by three dental schools were invited to participate in a self-administered questionnaire study, featuring a validated instrument containing sociodemographic questions and 16 motivational items grouped into four domains: economic, professional, vocational and personal background reasons. The variations in motivational item scores across sociodemographic factors were assessed using the Mann-Whitney U test (age, sex, ethnicity, having relatives in the dental profession and dentistry as the first choice) and Kruskal-Wallis test (dental school and family income).
RESULTS: A total of 295 dental school candidates participated in the study (Universiti Teknologi MARA: 137; Universiti Kebangsaan Malaysia: 99; MAHSA University: 59). Approximately 95% of participants identified dentistry as their primary career choice, with the vocational motivation of 'I like to help people' being the most prominent motivational factor. Dental school emerged as the critical factor significantly influencing three quarters of the motivational items. Sex, ethnicity and having relatives in the dental profession were the remaining factors significantly associated with variations in certain motivational items. Both dental school and ethnicity significantly affected four motivational domains (economic, professional, vocational and personal background).
CONCLUSION: This study provides an insightful overview of the sociodemographic factors that impact career decision-making among prospective dental students. The scores for most motivational items varied among shortlisted candidates in three dental schools. The findings hold implications for policy development in dentistry by universities and public policymakers.
CASE SUMMARY: This is the case of a 54-year-old Malay woman with genetically confirmed FH complicated by premature coronary artery disease (PCAD). She was clinically diagnosed in primary care at 52 years old, fulfilling the Simon Broome Criteria (possible FH), Dutch Lipid Clinic Criteria (score of 8: probable FH), and Familial Hypercholesterolaemia Case Ascertainment Tool (relative risk score of 9.51). Subsequently, she was confirmed to have a heterozygous LDLR c.190+4A>T intron 2 pathogenic variant at the age of 53 years. She was known to have hypercholesterolaemia and was treated with statin since the age of 25. However, the lipid-lowering agent was not intensified to achieve the recommended treatment target. The delayed FH diagnosis has caused this patient to have PCAD and percutaneous coronary intervention (PCI) at the age of 29 years and a second PCI at the age of 49 years. She also has a very strong family history of hypercholesterolaemia and PCAD, where seven out of eight of her siblings were affected. Despite this, FH was not diagnosed early, and cascade screening of family members was not conducted, resulting in a missed opportunity to prevent PCAD.
DISCUSSION: Familial hypercholesterolaemia can be clinically diagnosed in primary care to identify those who may require genetic testing. Multidisciplinary care focuses on improving identification, cascade screening, and management of FH, which is vital to improving prognosis and ultimately preventing PCAD.