RESULTS: In this study, using real-time PCR and multiplex bead-based immunoassay, the expression profiles of several immune mediators were examined in Crandell-Reese feline kidney (CRFK) cells infected with the feline coronavirus (FCoV) strain FIPV 79-1146 and in samples obtained from FCoV-positive cats. CRFK cells infected with FIPV 79-1146 showed an increase in the expression of interferon-related genes and pro-inflammatory cytokines such as MX1, viperin, CXCL10, CCL8, RANTES, KC, MCP1, and IL8. In addition, an increase in the expression of the above cytokines as well as GM-CSF and IFNγ was also detected in the PBMC, serum, and peritoneal effusions of FCoV-positive cats. Although the expression of MX1 and viperin genes was variable between cats, the expression of these two genes was relatively higher in cats having peritoneal effusion compared to cats without clinically obvious effusion. Higher viral load was also detected in the supernatant of peritoneal effusions compared to in the plasma of FCoV-positive cats. As expected, the secretion of IL1β, IL6 and TNFα was readily detected in the supernatant of peritoneal effusions of the FCoV-positive cats.
CONCLUSIONS: This study has identified various pro-inflammatory cytokines and interferon-related genes such as MX1, viperin, CXCL10, CCL8, RANTES, KC, MCP1, IL8, GM-CSF and IFNγ in FCoV-positive cats. With the exception of MX1 and viperin, no distinct pattern of immune mediators was observed that distinguished between FCoV-positive cats with and without peritoneal effusion. Further studies based on definitive diagnosis of FIP need to be performed to confirm the clinical importance of this study.
METHODS: We report on the development of the EWARS tool, based on users' recommendations into a convenient, user-friendly and reliable software aided by a user's workbook and its field testing in 30 health districts in Brazil, Malaysia and Mexico.
FINDINGS: 34 Health officers from the 30 study districts who had used the original EWARS for 7 to 10 months responded to a questionnaire with mainly open-ended questions. Qualitative content analysis showed that participants were generally satisfied with the tool but preferred open-access vs. commercial software. EWARS users also stated that the geographical unit should be the district, while access to meteorological information should be improved. These recommendations were incorporated into the second-generation EWARS-R, using the free R software, combined with recent surveillance data and resulted in higher sensitivities and positive predictive values of alarm signals compared to the first-generation EWARS. Currently the use of satellite data for meteorological information is being tested and a dashboard is being developed to increase user-friendliness of the tool. The inclusion of other Aedes borne viral diseases is under discussion.
CONCLUSION: EWARS is a pragmatic and useful tool for detecting imminent dengue outbreaks to trigger early response activities.
MATERIALS AND METHODS: This was a descriptive cross-sectional study that included 14 cases of B-cell NHLs of the oral cavity and maxillofacial region. The haematopoietic and lymphoid tissue tumours classification of WHO was used to categorize the cases. In-situ hybridisation for EBV-encoded RNA was performed to confirm the EBV infection.
RESULTS: The average age of the patients included in the study was found to be 48.8 ± 23 years with a higher female to male ratio (1.3:1). Our study suggested that diffuse large B-cell lymphomas (DLBCLs) and Burkitt's lymphomas (BLs) constitute the predominant subtypes of lymphomas affecting the oral cavity and maxillofacial regions.
CONCLUSION: The findings from our study support the view that at least a relatively smaller proportion of B-cell NHLs that occur in the oral cavity and maxillofacial region do not have a pathogenic association with EBV.
METHODS: Twelve relevant manuscripts were sourced from a total of 7288 search results obtained using PubMed, Medline and Google Scholar. The search keywords used were COVID-19, nasopharyngeal, oropharyngeal, swabs, SARS and CoV2. Original manuscripts were obtained and analysed by all authors. The review included manuscripts which have not undergone rigorous peer-review process in view of the magnitude of the topic discussed.
RESULTS: The viral load of SARS-CoV-2 RNA in the upper respiratory tract was significantly higher during the first week and peaked at 4-6 days after onset of symptoms, during which it can be potentially sampled. Nasopharyngeal swab has demonstrated higher viral load than oropharyngeal swab, where the difference in paired samples is best seen at 0-9 days after the onset of illness. Sensitivity of nasopharyngeal swab was higher than oropharyngeal swabs in COVID-19 patients. Patient self-collected throat washing has been shown to contain higher viral load than nasopharyngeal or oropharyngeal swab, with significantly higher sensitivity when compared with paired nasopharyngeal swab.
RECOMMENDATIONS: Routine nasopharyngeal swab of suspected COVID-19 infection should take anatomy of the nasal cavity into consideration to increase patient comfort and diagnostic yield. Routine oropharyngeal swab should be replaced by throat washing which has demonstrated better diagnostic accuracy, and it is safe towards others.
METHODS: The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses.
RESULTS: In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1.
CONCLUSION: The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.