Displaying publications 21 - 40 of 55 in total

Abstract:
Sort:
  1. Abu N, Yeap SK, Pauzi AZ, Akhtar MN, Zamberi NR, Ismail J, et al.
    Front Pharmacol, 2016;7:89.
    PMID: 27065873 DOI: 10.3389/fphar.2016.00089
    The Fritillaria imperialis is an ornamental flower that can be found in various parts of the world including Iraq, Afghanistan, Pakistan, and the Himalayas. The use of this plant as traditional remedy is widely known. This study aims to unveil the anti-cancer potentials of Isopimara-7,15-Dien-19-Oic Acid, extracted from the bulbs of F. imperialis in cervical cancer cell line, HeLa cells. Flow cytometry analysis of cell death, gene expression analysis via cDNA microarray and protein array were performed. Based on the results, Isopimara-7,15-Dien-19-Oic acid simultaneously induced cell death and promoted cell survival. The execution of apoptosis was apparent based on the flow cytometry results and regulation of both pro and anti-apoptotic genes. Additionally, the regulation of anti-oxidant genes were up-regulated especially thioredoxin, glutathione and superoxide dismutase- related genes. Moreover, the treatment also induced the activation of pro-survival heat shock proteins. Collectively, Isopimara-7,15-Dien-19-Oic Acid managed to induce cellular stress in HeLa cells and activate several anti- and pro survival pathways.
  2. Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, et al.
    Int Immunopharmacol, 2012 Apr;12(4):657-65.
    PMID: 22306767 DOI: 10.1016/j.intimp.2012.01.009
    The increasing prevalence of neurodegenerative diseases has prompted investigation into innovative therapeutics over the last two decades. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the therapeutic choices to control and suppress the symptoms of neurodegenerative diseases. However, NSAIDs-associated gastropathy has hampered their long term usage despite their clinical advancement. On the natural end of the treatment spectrum, our group has shown that cardamonin (2',4'-dihydroxy-6'-methoxychalcone) isolated from Alpinia rafflesiana exerts potential anti-inflammatory activity in activated macrophages. Therefore, we further explored the anti-inflammatory property of cardamonin as well as its underlying mechanism of action in IFN-γ/LPS-stimulated microglial cells. In this investigation, cardamonin shows promising anti-inflammatory activity in microglial cell line BV2 by inhibiting the secretion of pro-inflammatory mediators including nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). The inhibition of NO and PGE(2) by cardamonin are resulted from the reduced expression of inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2), respectively. Meanwhile the suppressive effects of cardamonin on TNF-α, IL-1β and IL-6 were demonstrated at both protein and mRNA levels, thus indicating the interference of upstream signal transduction pathway. Our results also validate that cardamonin interrupts nuclear factor-kappa B (NF-κB) signalling pathway via attenuation of NF-κB DNA binding activity. Interestingly, cardamonin also showed a consistent suppressive effect on the cell surface expression of CD14. Taken together, our experimental data provide mechanistic insights for the anti-inflammatory actions of cardamonin in BV2 and thus suggest a possible therapeutic application of cardamonin for targeting neuroinflammatory disorders.
  3. Hussin Y, Aziz MNM, Che Rahim NF, Yeap SK, Mohamad NE, Masarudin MJ, et al.
    Int J Mol Sci, 2018 Apr 11;19(4).
    PMID: 29641445 DOI: 10.3390/ijms19041151
    Extensive research has been done in the search for innovative treatments against colon adenocarcinomas; however, the incidence rate of patients remains a major cause of cancer-related deaths in Malaysia. Natural bioactive compounds such as curcumin have been substantially studied as an alternative to anticancer drug therapies and have been surmised as a potent agent but, nevertheless, remain deficient due to its poor cellular uptake. Therefore, efforts now have shifted toward mimicking curcumin to synthesize novel compounds sharing similar effects. A synthetic analog, (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-ene-1-one (DK1), was recently synthesized and reported to confer improved bioavailability and selectivity toward human breast cancer cells. This study, therefore, aims to assess the anticancer mechanism of DK1 in relation to the induction of in vitro cell death in selected human colon cancer cell lines. Using the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, the cytotoxicity of DK1 towards HT29 and SW620 cell lines were investigated. Acridine orange/propidium iodide (AO/PI) dual-staining assay and flow cytometry analyses (cell cycle analysis, Annexin/V-FITC and JC-1 assays) were incorporated to determine the mode of cell death. To further determine the mechanism of cell death, quantitative real-time polymerase chain reaction (qRT-PCR) and proteome profiling were conducted. Results from this study suggest that DK1 induced changes in cell morphology, leading to a decrease in cell viability and subsequent induction of apoptosis. DK1 treatment inhibited cell viability and proliferation 48 h post treatment with IC50 values of 7.5 ± 1.6 µM for HT29 cells and 14.5 ± 4.3 µM for SW620 cells, causing cell cycle arrest with increased accumulation of cell populations at the sub-G₀/G₁phaseof 74% and 23%, respectively. Flow cytometry analyses showed that DK1 treatment in cancer cells induced apoptosis, as indicated by DNA fragmentation and depolarization of the mitochondrial membrane. qRT-PCR results show significant upregulation in the expression of caspase-9 in both HT29 and SW620 cell lines, further supporting that cell death induction by DK1 is via an intrinsic pathway. These outcomes, therefore, demonstrate DK1 as a potential anticancer agent for colon adenocarcinoma due to its anti-apoptotic attributes.
  4. Khalid MH, Akhtar MN, Mohamad AS, Perimal EK, Akira A, Israf DA, et al.
    J Ethnopharmacol, 2011 Sep 01;137(1):345-51.
    PMID: 21664960 DOI: 10.1016/j.jep.2011.05.043
    ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber zerumbet (L.) Smith, a wild edible ginger species or locally known as "lempoyang", commonly used in the Malays traditional medicine as an appetizer or to treat stomachache, toothache, muscle sprain and as a cure for swelling sores and cuts.

    AIM: The present study was conducted to investigate the possible mechanism of actions underlying the systemic antinociception activity of the essential oil of Zingiber zerumbet (EOZZ) in chemical-induced nociception tests in mice.

    MATERIALS AND METHODS: Acetic acid-induced abdominal constriction, capsaicin-, glutamate- and phorbol 12-myristate 13-acetate-induced paw licking tests in mice were employed in the study. In all experiments, EOZZ was administered systemically at the doses of 50, 100, 200 and 300 mg/kg.

    RESULTS: It was shown that EOZZ given to mice via intraperitoneal and oral routes at 50, 100, 200 and 300 mg/kg produced significant dose dependent antinociception when assessed using acetic acid-induced abdominal writing test with calculated mean ID(50) values of 88.84 mg/kg (80.88-97.57 mg/kg) and 118.8 mg/kg (102.5-137.8 mg/kg), respectively. Likewise, intraperitoneal administration of EOZZ at similar doses produced significant dose dependent inhibition of neurogenic pain induced by intraplantar injection of capsaicin (1.6 μg/paw), glutamate (10 μmol/paw) and phorbol 12-myristate 13-acetate (1.6μg/paw) with calculated mean ID(50) of 128.8 mg/kg (118.6-139.9 mg/kg), 124.8 mg/kg (111.4-139.7 mg/kg) and 40.29 (35.39-45.86) mg/kg, respectively. It was also demonstrated that pretreatment with l-arginine (100mg/kg, i.p.), a nitric oxide precursor significantly reversed antinociception produced by EOZZ suggesting the involvement of l-arginine/nitric oxide pathway. In addition, methylene blue (20mg/kg, i.p.) significantly enhanced antinociception produced by EOZZ. Administration of glibenclamide (10mg/kg, i.p.), an ATP-sensitive K(+) channel antagonist significantly reversed antinociceptive activity induced by EOZZ.

    CONCLUSION: Together, the present results suggested that EOZZ-induced antinociceptive activity was possibly related to its ability to inhibit glutamatergic system, TRPV1 receptors as well as through activation of l-arginine/nitric oxide/cGMP/protein kinase C/ATP-sensitive K(+) channel pathway.

  5. Yahya N, Akhtar MN, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8116-22.
    PMID: 23421187
    Magnetic nanoparticles in the hollow region of carbon nanotubes have attraction due to their changing physical electrical and magnetic properties. Nickel zinc ferrite plays an important role in many applications due to its superior magnetic properties. Ni0.8Zn0.2Fe2O4 single crystals were encapsulated in multiwall carbon nanotubes (MWCNTs). The magnetic nano crystals were prepared using a sol-gel self combustion method at the sintering temperature of 750 degrees C and were characterized by XRD, FESEM, TEM and VSM. Initial permeability, Q-factor and relative loss factor were measured by impedance vector network analyzer. XRD patterns were used for the phase identification. FESEM images show morphology and dimensions of the grains of Ni0.8Zn0.2Fe2O4 single crystals and Ni0.8Zn0.2Fe2O4 single crystals in MWCNTs. TEM images were used to investigate single crystal and encapsulation of Ni0.8Zn0.2Fe2O4 single crystals in the MWCNTs. VSM results confirmed super paramagnetic behaviour of encapsulated Ni0.8Zn0.2Fe2O4 single crystals. It was also attributed that encapsulated Ni0.8Zn0.2Fe2O4 single crystals in MWCNTs showed a higher initial permeability (51.608), Q-factor (67.069), and low loss factor (0.0002) as compared to Ni0.8Zn0.2Fe2O4 single crystals. The new encapsulated Ni0.8Zn0.2Fe2O4 single crystals in the MWCNTs may have potential applications in electronic and medical industries.
  6. Yahya N, Akhtar MN, Nasir N, Shafie A, Jabeli MS, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8100-9.
    PMID: 23421185
    In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.
  7. Yahya N, Al Habashi RM, Koziol K, Borkowski RD, Akhtar MN, Kashif M, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2652-6.
    PMID: 21449447
    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
  8. Nasir N, Yahya N, Kashif M, Daud H, Akhtar MN, Zaid HM, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2551-4.
    PMID: 21449424
    This is our initial response towards preparation of nano-inductors garnet for high operating frequencies strontium iron garnet (Sr3Fe5O12) denoted as SrIG and yttrium iron garnet (Y3Fe5O12) denoted as YIG. The garnet nano crystals were prepared by novel sol-gel technique. The phase and crystal structure of the prepared samples were identified by using X-ray diffraction analysis. SEM images were done to reveal the surface morphology of the samples. Raman spectra was taken for yttrium iron garnet (Y3Fe5O12). The magnetic properties of the samples namely initial permeability (micro), relative loss factor (RLF) and quality factor (Q-Factor) were done by using LCR meter. From the XRD profile, both of the Y3Fe5O12 and Sr3Fe5O12 samples showed single phase garnet and crystallization had completely occurred at 900 degrees C for the SrIG and 950 degrees C for the YIG samples. The YIG sample showed extremely low RLF value (0.0082) and high density 4.623 g/cm3. Interesting however is the high Q factor (20-60) shown by the Sr3Fe5O12 sample from 20-100 MHz. This high performance magnetic property is attributed to the homogenous and cubical-like microstructure. The YIG particles were used as magnetic feeder for EM transmitter. It was observed that YIG magnetic feeder with the EM transmitter gave 39% higher magnetic field than without YIG magnetic feeder.
  9. Abu Bakar NA, Sulaiman MR, Lajis N, Akhtar MN, Mohamad AS
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S711-S717.
    PMID: 33828366 DOI: 10.4103/jpbs.JPBS_344_19
    Introduction: Pain is a major global health issue, where its pharmacotherapy prompts unwanted side effects; hence, the development of effective alternative compounds from natural derivatives with lesser side effects is clinically needed. Chalcone; the precursors of flavonoid, and its derivatives have been widely investigated due to its pharmacological properties.

    Objective: This study addressed the therapeutic effect of 3-(2,5-dimethoxyphenyl)-1-(5-methyl furan-2-yl) prop-2-en-1-one (DMPF-1); synthetic chalcone derivative, on antinociceptive activity in vivo.

    Materials and Methods: The antinociceptive profile was evaluated using acetic-acid-induced abdominal writhing, hot plate, and formalin-induced paw licking test. Capsaicin, phorbol 12-myristate 12 acetate (PMA), and glutamate-induced paw licking test were carried out to evaluate their potential effects toward different targets.

    Results: It was shown that the doses of 0.1, 0.5, 1, and 5 mg/kg of DMPF-1 given via intraperitoneal injection showed significant reduction in writhing responses and increased the latency time in hot-plate test where reduced time spent on licking the injected paw in formalin and dose contingency inhibition was observed. The similar results were observed in capsaicin, PMA, and glutamate-induced paw licking test. In addition, the challenge with nonselective opioid receptor antagonist (naloxone) aimed to evaluate the involvement of the opioidergic system, which showed no reversion in analgesic profile in formalin and hot-plate test.

    Conclusion: Collectively, this study showed that DMPF-1 markedly inhibits both peripheral and central nociception through the mechanism involving an interaction with vanilloid and glutamatergic system regardless of the activation of the opioidergic system.

  10. Akhtar MN, Khan M, Khan SA, Afzal A, Subbiah R, Ahmad SN, et al.
    Materials (Basel), 2021 May 18;14(10).
    PMID: 34070060 DOI: 10.3390/ma14102639
    In the present investigation, the non-recrystallization temperature (TNR) of niobium-microalloyed steel is determined to plan rolling schedules for obtaining the desired properties of steel. The value of TNR is based on both alloying elements and deformation parameters. In the literature, TNR equations have been developed and utilized. However, each equation has certain limitations which constrain its applicability. This study was completed using laboratory-grade low-carbon Nb-microalloyed steels designed to meet the API X-70 specification. Nb- microalloyed steel is processed by the melting and casting process, and the composition is found by optical emission spectroscopy (OES). Multiple-hit deformation tests were carried out on a Gleeble® 3500 system in the standard pocket-jaw configuration to determine TNR. Cuboidal specimens (10 (L) × 20 (W) × 20 (T) mm3) were taken for compression test (multiple-hit deformation tests) in gleeble. Microstructure evolutions were carried out by using OM (optical microscopy) and SEM (scanning electron microscopy). The value of TNR determined for 0.1 wt.% niobium bearing microalloyed steel is ~ 951 °C. Nb- microalloyed steel rolled at TNR produce partially recrystallized grain with ferrite nucleation. Hence, to verify the TNR value, a rolling process is applied with the finishing rolling temperature near TNR (~951 °C). The microstructure is also revealed in the pancake shape, which confirms TNR.
  11. Akhtar MN, Sathish T, Mohanavel V, Afzal A, Arul K, Ravichandran M, et al.
    Materials (Basel), 2021 Aug 10;14(16).
    PMID: 34442992 DOI: 10.3390/ma14164470
    With the advent of the industrial revolution 4.0, the goal of the manufacturing industry is to produce a large number of products in relatively less time. This study applies the Taguchi L27 orthogonal array methodological paradigm along with response surface design. This work optimizes the process parameters in the turning of Aluminum Alloy 7075 using a Computer Numerical Control (CNC) machine. The optimal parameters influenced the rate of metal removal, the roughness of the machined surface, and the force of cutting. This experimental investigation deals with the optimization of speed (800 rpm, 1200 rpm, and 1600 rpm) and feed (0.15, 0.20, and 0.25 mm/rev) in addition to cutting depth (1.0, 1.5, and 2.0 mm) on the turning of Aluminum 7075 alloy in a CNC machine. The outcome in terms of results such as the removal rate of material (maximum), roughness on the machined surface (minimum), along with cutting force (least amount) were improved by the L27 array Taguchi method. There were 27 specimens of Al7075 alloy produced as per the array, and the corresponding responses were measured with the help of various direct contact and indirect contact sensors. Results were concluded all the way through diagrams of main effects in favor of signal-to-noise ratios and diagrams of surfaces with contour diagrams for various combinations of responses.
  12. Rajajendram R, Tham CL, Akhtar MN, Sulaiman MR, Israf DA
    Mediators Inflamm, 2015;2015:176926.
    PMID: 26300589 DOI: 10.1155/2015/176926
    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The interaction between airway epithelium and inflammatory mediators plays a key role in the pathogenesis of asthma. In vitro studies evaluated the inhibitory effects of 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1), a synthetic chalcone analogue, upon inflammation in the A549 lung epithelial cell line. DMPF-1 selectively inhibited TNF-α-stimulated CC chemokine secretion (RANTES, eotaxin-1, and MCP-1) without any effect upon CXC chemokine (GRO-α and IL-8) secretion. Western blot analysis further demonstrated that the inhibitory activity resulted from disruption of p65NF-κB nuclear translocation without any effects on the mitogen-activated protein kinase (MAPK) pathway. Treatment of ovalbumin-sensitized and ovalbumin-challenged BALB/c mice with DMPF-1 (0.2-100 mg/kg) demonstrated significant reduction in the secretion and gene expression of CC chemokines (RANTES, eotaxin-1, and MCP-1) and Th2 cytokines (IL-4, IL-5, and IL-13). Furthermore, DMPF-1 treatment inhibited eosinophilia, goblet cell hyperplasia, peripheral blood total IgE, and airway hyperresponsiveness in ovalbumin-sensitized and ovalbumin-challenged mice. In conclusion, these findings demonstrate the potential of DMPF-1, a nonsteroidal compound, as an antiasthmatic agent for further pharmacological evaluation.
  13. Danish M, Akhtar MN, Hashim R, Saleh JM, Bakar EA
    MethodsX, 2020;7:100983.
    PMID: 32742942 DOI: 10.1016/j.mex.2020.100983
    This article encompasses the method related to image segmentation of the Field Emission Scanning Electron Microscope (FESEM) images of Acacia Mangium Wood derived Activated Carbons under different conditions. Image segmentation using Hue-Saturation-Value (HSV) thresholding method was adapted to identify the different pattern composition in the grayscale images by varying the intensity Value (V) and keeping Hue (H) and Saturation (S) to zero, and each pattern was considered as one type of element that constituted the Activated Carbon. The algorithm was developed to compute the percentage of each pattern using non-zero pixels, and on the basis of different patterns, different elements having certain percentage of composition were recorded. Later, these results were compared with the Energy Dispersive X-ray Spectroscopy (EDS) to cross check the difference in percentage of each element present at the surface of the Activated Carbon. Part of this result is published in the article [1], "Comparison of surface properties of wood biomass Activated Carbons and their application against rhodamine B and methylene blue dye" Surfaces and Interfaces vol. 11 (2018) pp1-13.•The methods involved will be useful for characterization of Activated Carbon materials.•Image segmentation using HSV thresholding will inspire other researchers to apply similar concept on other materials.•Different patterns obtained for FESEM images using HSV thresholding was able to determine the presence of multiple elements present in the prepared Activated Carbon samples.
  14. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AA, Mohamad AB, Al-Amiery AA
    Molecules, 2015;20(12):22833-47.
    PMID: 26703542 DOI: 10.3390/molecules201219884
    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.
  15. Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, et al.
    Molecules, 2013 Apr 10;18(4):4209-20.
    PMID: 23612473 DOI: 10.3390/molecules18044209
    Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when L-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
  16. Hasan A, Abbas A, Akhtar MN
    Molecules, 2011 Sep 13;16(9):7789-802.
    PMID: 22143543 DOI: 10.3390/molecules16097789
    A series of 1,3,5-triaryl-2-pyrazolines was synthesized by dissolving the corresponding 4-alkoxychalcones in glacial acetic acid containing a few drops of concentrated hydrochloric acid. This step was followed by the addition of (3,4-dimethylphenyl) hydrazaine hydrochloride. Finally the target compounds were precipitated by pouring the reaction mixture onto crushed ice. The structures of the synthesized compounds were established by physicochemical and spectroscopic methods. The 1,3,5-triaryl-2-pyrazolines bearing homologous alkoxy groups were found to possess fluorescence properties in the blue region of the visible spectrum when irradiated with ultraviolet radiation. The fluorescent behavior of these compounds was studied by UV-Vis and emission spectroscopy, performed at room temperature.
  17. Mohd Sakeh N, Md Razip NN, Mohd Ma'in FI, Abdul Bahari MN, Latif N, Akhtar MN, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731323 DOI: 10.3390/molecules25153403
    Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
  18. Nazeer U, Rasool N, Mujahid A, Mansha A, Zubair M, Kosar N, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752125 DOI: 10.3390/molecules25153521
    In the present study, 2-bromo-4-chlorophenyl-2-bromobutanoate (3) was synthesized via the reaction of 2-bromo-4-chlorophenol with 2-bromobutanoyl bromide in the presence of pyridine. A variety of 2-bromo-4-chlorophenyl-2-bromobutanoate derivatives (5a-f) were synthesized with moderate to good yields via a Pd-catalyzed Suzuki cross-coupling reaction. To find out the reactivity and electronic properties of the compounds, Frontier molecular orbital analysis, non-linear optical properties, and molecular electrostatic potential studies were performed.
  19. Rahim NFC, Hussin Y, Aziz MNM, Mohamad NE, Yeap SK, Masarudin MJ, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652694 DOI: 10.3390/molecules26051261
    Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.
  20. Yeap SK, Mohd Ali N, Akhtar MN, Razak NA, Chong ZX, Ho WY, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652854 DOI: 10.3390/molecules26051277
    (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cytotoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle, and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A. BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7 cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by altering the expressions of apoptotic-regulating miRNAs and associated genes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links