Displaying publications 21 - 40 of 62 in total

Abstract:
Sort:
  1. Kannan M, Saad MM, Talip N, Baharum SN, Bunawan H
    Microbiol Resour Announc, 2019 May 16;8(20).
    PMID: 31097500 DOI: 10.1128/MRA.00262-19
    Rice tungro disease was discovered in Malaysia in the 1930s. The first and only genome of Rice tungro bacilliform virus (RTBV) isolated from rice in Malaysia was sequenced in 1999. After nearly two decades, here, we present the complete genome sequence of an RTBV isolate in rice from Seberang Perai, Malaysia.
  2. Kannan M, Mohamad Saad M, Zainal Z, Kassim H, Ismail I, Talip N, et al.
    Iran J Biotechnol, 2020 Oct;18(4):e2566.
    PMID: 34056024 DOI: 10.30498/IJB.2020.2566
    Background: Rice tungro disease (RTD) is a viral disease mainly affecting rice in Asia. RTD caused by Rice tungro bacilliform virus and Rice tungro spherical virus. To date, there are only 5 RTSV isolates have been reported.

    Objectives: In this study, we aimed to report the complete nucleotide sequence of Malaysian isolate of Rice tungro spherical virus Seberang Perai (RTSV-SP) for the first time. RTSV-SP was characterized and its evolutionary relationship with previously reported Indian and Philippines isolates were elucidated.

    Materials and Methods: RTSV-SP isolate was isolated from a recent outbreak in a paddy field in Seberang Perai zone of Malaysia. Its complete genome was amplified by RT-PCR, cloned and sequenced.

    Results: Sequence analysis indicated that the genome of RTSV-SP consisted of 12,173 nucleotides (nt). Comparative analysis of 6 complete genome sequences using Clustal Omega showed that Seberang Perai isolate shared the highest nucleotide identity (96.04%) with Philippine-A isolate, except that the sORF-2 of RTSV-SP is shorter than RTSV Philippine-A by 27 amino acid residues. RTSV-SP found to cluster in Southeast Asia (SEA) group based on the whole genome sequence phylogenetic analysis using MEGA X software.

    Conclusions: Phylogenetic classification of RTSV isolates based on the complete nucleotide sequences showed more distinctive clustering pattern with the addition of RTSV-SP whole genome to the available isolates. Present study described the isolation and molecular characterization of RTSV-SP.

  3. Akbar MA, Yusof NYM, Sahrani FK, Usup G, Ahmad A, Baharum SN, et al.
    Biology (Basel), 2021 Aug 25;10(9).
    PMID: 34571703 DOI: 10.3390/biology10090826
    The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.
  4. Yusof NAM, Razali SA, Mohd Padzil A, Lau BYC, Baharum SN, Nor Muhammad NA, et al.
    Biology (Basel), 2022 Nov 01;11(11).
    PMID: 36358301 DOI: 10.3390/biology11111600
    (1) Background: Quorum sensing (QS) is the chemical communication between bacteria that sense chemical signals in the bacterial population to control phenotypic changes through the regulation of gene expression. The inhibition of QS has various potential applications, particularly in the prevention of bacterial infection. QS can be inhibited by targeting the LuxP, a periplasmic receptor protein that is involved in the sensing of the QS signaling molecule known as the autoinducer 2 (AI-2). The sensing of AI-2 by LuxP transduces the chemical information through the inner membrane sensor kinase LuxQ protein and activates the QS cascade. (2) Methods: An in silico approach was applied to design DNA aptamers against LuxP in this study. A method combining molecular docking and molecular dynamics simulations was used to select the oligonucleotides that bind to LuxP, which were then further characterized using isothermal titration calorimetry. Subsequently, the bioactivity of the selected aptamer was examined through comparative transcriptome analysis. (3) Results: Two aptamer candidates were identified from the ITC, which have the lowest dissociation constants (Kd) of 0.2 and 0.5 micromolar. The aptamer with the lowest Kd demonstrated QS suppression and down-regulated the flagellar-assembly-related gene expression. (4) Conclusions: This study developed an in silico approach to design an aptamer that possesses anti-QS properties.
  5. Ilias IA, Negishi K, Yasue K, Jomura N, Morohashi K, Baharum SN, et al.
    J Plant Res, 2019 Mar;132(2):159-172.
    PMID: 30341720 DOI: 10.1007/s10265-018-1067-0
    Expansin is a non-enzymatic protein which plays a pivotal role in cell wall loosening by inducing stress relaxation and extension in the plant cell wall. Previous studies on Arabidopsis, Petunia × hybrida, and tomato demonstrated that the suppression of expansin gene expression reduced plant growth but expansin overexpression does not necessarily promotes growth. In this study, both expansin gene suppression and overexpression in dark-grown transgenic Arabidopsis seedlings resulted in reduced hypocotyl length at late growth stages with a more pronounced effect for the overexpression. This defect in hypocotyl elongation raises questions about the molecular effect of expansin gene manipulation. RNA-seq analysis of the transcriptomic changes between day 3 and day 5 seedlings for both transgenic lines found numerous differentially expressed genes (DEGs) including transcription factors and hormone-related genes involved in different aspects of cell wall development. These DEGs imply that the observed hypocotyl growth retardation is a consequence of the concerted effect of regulatory factors and multiple cell-wall related genes, which are important for cell wall remodelling during rapid hypocotyl elongation. This is further supported by co-expression analysis through network-centric approach of differential network cluster analysis. This first transcriptome-wide study of expansin manipulation explains why the effect of expansin overexpression is greater than suppression and provides insights into the dynamic nature of molecular regulation during etiolation.
  6. Ilias IA, Airianah OB, Baharum SN, Goh HH
    Genom Data, 2017 Jun;12:132-133.
    PMID: 28529882 DOI: 10.1016/j.gdata.2017.05.002
    Expansin is a cell wall loosening protein without hydrolytic activity, which allows cell expansion by influencing cell wall extensibility. Previous studies showed that the suppression of expansin genes (EXPA1, EXPA3, EXPA5 and EXPA10) resulted in defective organ growth and altered cell wall chemical composition [1,2]. However, the molecular mechanism on how the suppression of non-enzymatic expansin expression can result in widespread effects on plant cell wall and organ growth is still unclear. In this study, we performed transcriptomic analysis on the hypocotyls of previously reported transgenic Arabidopsis line [1] to investigate the effects of expansin gene suppression on the global gene expression pattern, particularly on the cell wall related genes.
  7. Rosli MAF, Azizan KA, Baharum SN, Goh HH
    Data Brief, 2017 Oct;14:295-297.
    PMID: 28795107 DOI: 10.1016/j.dib.2017.07.068
    Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.
  8. Ilias IA, Airianah OB, Baharum SN, Goh HH
    Data Brief, 2017 Dec;15:320-323.
    PMID: 29214193 DOI: 10.1016/j.dib.2017.09.050
    Expansin increases cell wall extensibility to allow cell wall loosening and cell expansion even in the absence of hydrolytic activity. Previous studies showed that excessive overexpression of expansin gene resulted in defective growth (Goh et al., 2014; Rochange et al., 2001) [1,2] and altered cell wall chemical composition (Zenoni et al., 2011) [3]. However, the molecular mechanism on how the overexpression of non-enzymatic cell wall protein expansin can result in widespread effects on plant cell wall and organ growth remains unclear. We acquired transcriptomic data on previously reported transgenic Arabidopsis line (Goh et al., 2014) [1] to investigate the effects of overexpressing a heterologus cucumber expansin gene (CsEXPA1) on the global gene expression pattern during early and late phases of etiolated hypocotyl growth.
  9. Rosli MAF, Mediani A, Azizan KA, Baharum SN, Goh HH
    Front Plant Sci, 2021;12:655004.
    PMID: 33968110 DOI: 10.3389/fpls.2021.655004
    Hybridization is key to the evolution and diversity of plants in nature. Nepenthaceae comprises a family of diverse tropical carnivorous pitcher plant species with extensive hybridization. However, there is no study to date on the metabolite expression of hybrids in this family. We performed a non-targeted metabolomics analysis of the pitchers of two Nepenthes species with different dietary habits, namely, the semi-detritivorous N. ampullaria and carnivorous N. rafflesiana with their hybrid (N. × hookeriana) for a comparative study. The whole-pitcher samples were extracted in methanol:chloroform:water (3:1:1) via sonication-assisted extraction and analyzed using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) followed by data analysis to profile chemical compositions. A total of 1,441 metabolite features were profiled from the three species in which 43.3% of features in the hybrid samples were not found in either of its parents. The partial least squares discriminant analysis (PLS-DA) found 324 metabolite features with variable in projection (VIP) values greater than one in which 55 features were statistically significant. This showed that the hybrid is closer to N. rafflesiana, which is consistent to the previous study on gene and protein expressions. A total of 105 metabolites were putatively identified with manual searches using public metabolite databases. Phenols were detected to be the most abundant secondary metabolites due to a high flavonoid content, especially in N. rafflesiana. The most abundant feature 476.3s:449.102 was found to be the most significant VIP for distinguishing between the three species as a chemical marker. This is the first study comparing metabolites in the carnivory organs of different Nepenthes species with comprehensive profiling and putative identification. The differential metabolite compositions in the pitchers of different species might have ecological implications with the hybrid showing intermediate phenotype between the parents as well as manifesting unique metabolites. However, there is no clear evidence of metabolites related to the differences in dietary habits between the hybrid and the two parent species.
  10. Ong CE, Ahmad R, Goh YK, Azizan KA, Baharum SN, Goh KJ
    PLoS One, 2021;16(12):e0262029.
    PMID: 34972183 DOI: 10.1371/journal.pone.0262029
    Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.
  11. Annuar NAK, Azlan UK, Mediani A, Tong X, Han R, Al-Olayan E, et al.
    Biomed Pharmacother, 2024 Feb;171:116134.
    PMID: 38219389 DOI: 10.1016/j.biopha.2024.116134
    Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on μ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.
  12. Ahmad SJ, Mohamad Zin N, Mazlan NW, Baharum SN, Baba MS, Lau YL
    PeerJ, 2021;9:e10816.
    PMID: 33777509 DOI: 10.7717/peerj.10816
    Background: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach.

    Methods: Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts.

    Results: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.

  13. Ismail SNFB, Baharum SN, Fazry S, Low CF
    J Fish Dis, 2019 Dec;42(12):1761-1772.
    PMID: 31637743 DOI: 10.1111/jfd.13093
    Discovery of species-specific interaction between the host and virus has drawn the interest of many researchers to study the evolution of the newly emerged virus. Comparative genome analysis provides insights of the virus functional genome evolution and the underlying mechanisms of virus-host interactions. The analysis of nucleotide composition signified the evolution of nodavirus towards host specialization in a host-specific mutation manner. GC-rich genome of betanodavirus was significantly deficient in UpA and UpU dinucleotides composition, whilst the AU-rich genome of gammanodavirus was deficient in CpG dinucleotide. The capsid of MrNV and PvNV of gammanodavirus retains the highest abundance of adenine and uracil at the second codon position, respectively, which were found to be very distinctive from the other genera. ENC-GC3 plot inferred the influence of natural selection and mutational pressure in shaping the evolution of MrNV RdRp and capsid, respectively. Furthermore, CAI/eCAI analysis predicts a comparable adaptability of MrNV in squid, Sepia officinalis than its natural host, Macrobrachium rosenbergii. Thus, further study is warranted to investigate the capacity of MrNV replication in S. officinalis owing to its high codon adaptation index.
  14. Azizan KA, Baharum SN, Mohd Noor N
    Molecules, 2012 Jul 03;17(7):8022-36.
    PMID: 22759915 DOI: 10.3390/molecules17078022
    Gas chromatography mass spectrometry (GC-MS) and headspace gas chromatography mass spectrometry (HS/GC-MS) were used to study metabolites produced by Lactococcus lactis subsp. cremoris MG1363 grown at a temperature of 30 °C with and without agitation at 150 rpm, and at 37 °C without agitation. It was observed that L. lactis produced more organic acids under agitation. Primary alcohols, aldehydes, ketones and polyols were identified as the corresponding trimethylsilyl (TMS) derivatives, whereas amino acids and organic acids, including fatty acids, were detected through methyl chloroformate derivatization. HS analysis indicated that branched-chain methyl aldehydes, including 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal are degdradation products of isoleucine, leucine or valine. Multivariate analysis (MVA) using partial least squares discriminant analysis (PLS-DA) revealed the major differences between treatments were due to changes of amino acids and fermentation products.
  15. Bunawan H, Amin NM, Bunawan SN, Baharum SN, Mohd Noor N
    PMID: 24772185 DOI: 10.1155/2014/902734
    Ficus deltoidea Jack (Moraceae) has had a long history of use in traditional medicine among the Malays to alleviate and heal ailments such as sores, wounds, and rheumatism and as an after-birth tonic and an antidiabetic drug. Modern pharmacological studies demonstrated that this plant has a wide variety of beneficial attributes for human health. Despite its importance, a review of this species has not been published in the scientific literature to date. Here, we review and summarize the historic and current literature concerning the botany, traditional uses, phytochemistry, pharmacological effects, and toxicity of this wonder plant. This summary could be beneficial for future research aiming to exploit the therapeutic potential of this useful, medicinal species.
  16. Veeramohan R, Azizan KA, Aizat WM, Goh HH, Mansor SM, Yusof NSM, et al.
    Data Brief, 2018 Jun;18:1212-1216.
    PMID: 29900296 DOI: 10.1016/j.dib.2018.04.001
    Mitragyna speciosa is a psychoactive plant known as "ketum" in Malaysia and "kratom" in Thailand. This plant is distinctly known to produce two important alkaloids, namely mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG) that can bind to opioid receptors [1]. MG was reported to exhibit antidepressant properties in animal studies [2]. These compounds were also proposed to have the potential to replace opioid analgesics with much lower risks of side effects [3]. To date, there are only over 40 metabolites identified in M. speciosa [4,5]. To obtain a more complete profile of secondary metabolites in ketum, we performed metabolomics study using mature leaves of the green M. speciosa variety. The leaf samples were extracted using methanol prior to liquid chromatography-electrospray ionization-time of flight-mass spectrometry (LC-ESI-TOF-MS) analysis. This data can be useful to for the identification of unknown metabolites that are associated with alkaloid biosynthesis pathway in M. speciosa.
  17. Mohd-Sharif N, Shaibullah S, Givajothi V, Tan CS, Ho KL, Teh AH, et al.
    Acta Crystallogr F Struct Biol Commun, 2017 02 01;73(Pt 2):109-115.
    PMID: 28177322 DOI: 10.1107/S2053230X17001212
    TylP is one of five regulatory proteins involved in the regulation of antibiotic (tylosin) production, morphological and physiological differentiation in Streptomyces fradiae. Its function is similar to those of various γ-butyrolactone receptor proteins. In this report, N-terminally His-tagged recombinant TylP protein (rTylP) was overproduced in Escherichia coli and purified to homogeneity. The rTylP protein was crystallized from a reservoir solution comprising 34%(v/v) ethylene glycol and 5%(v/v) glycerol. The protein crystals diffracted X-rays to 3.05 Å resolution and belonged to the trigonal space group P3121, with unit-cell parameters a = b = 126.62, c = 95.63 Å.
  18. Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, et al.
    PLoS One, 2023;18(3):e0283147.
    PMID: 36943850 DOI: 10.1371/journal.pone.0283147
    The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
  19. Zamani AI, Barig S, Ibrahim S, Mohd Yusof H, Ibrahim J, Low JYS, et al.
    Microb Cell Fact, 2020 Sep 09;19(1):179.
    PMID: 32907579 DOI: 10.1186/s12934-020-01434-w
    BACKGROUND: Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources.

    RESULTS: Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC-MS/MS-TripleQ and GC-MS, while untargeted metabolite profiling was performed using LC-MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures.

    CONCLUSIONS: Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.

  20. Bunawan H, Choong CY, Md-Zain BM, Baharum SN, Noor NM
    Int J Mol Sci, 2011;12(11):7626-34.
    PMID: 22174621 DOI: 10.3390/ijms12117626
    Plastid trnL-trnF and nuclear ribosomal ITS sequences were obtained from selected wild-type individuals of Polygonum minus Huds. in Peninsular Malaysia. The 380 bp trnL-trnF sequences of the Polygonum minus accessions were identical. Therefore, the trnL-trnF failed to distinguish between the Polygonum minus accessions. However, the divergence of ITS sequences (650 bp) among the Polygonum minus accessions was 1%, indicating that these accessions could be distinguished by the ITS sequences. A phylogenetic relationship based on the ITS sequences was inferred using neighbor-joining, maximum parsimony and Bayesian inference. All of the tree topologies indicated that Polygonum minus from Peninsular Malaysia is unique and different from the synonymous Persicaria minor (Huds.) Opiz and Polygonum kawagoeanum Makino.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links