Displaying publications 21 - 40 of 66 in total

Abstract:
Sort:
  1. Goh CS, Lee KT, Bhatia S
    Bioresour Technol, 2010 Oct;101(19):7362-7.
    PMID: 20471249 DOI: 10.1016/j.biortech.2010.04.048
    This work presents the pretreatment of oil palm fronds (OPF) using hot compressed water (HCW) to enhance sugar recovery in enzymatic hydrolysis. A central, composite rotatable design was used to optimize the effect of reaction temperature, reaction time and liquid-solid ratio on the pretreatment process. All variables were found to significantly affect the glucose yield. A quadratic polynomial equation was used to model glucose yield by multiple regression analysis, using response surface methodology (RSM). Using a 10 bar pressurized reactor, the optimum conditions for pretreatment of OPF were found at 178 degrees C, 11.1 min and a liquid-solid ratio of 9.6. The predicted glucose yield was 92.78 wt.% at the optimum conditions. Experimental verification of the optimum conditions gave a glucose yield in good agreement with the estimated value of the model.
  2. Goh CS, Tan KT, Lee KT, Bhatia S
    Bioresour Technol, 2010 Jul;101(13):4834-41.
    PMID: 19762229 DOI: 10.1016/j.biortech.2009.08.080
    The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities.
  3. Hashim SM, Mohamed AR, Bhatia S
    Adv Colloid Interface Sci, 2010 Oct 15;160(1-2):88-100.
    PMID: 20813344 DOI: 10.1016/j.cis.2010.07.007
    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented.
  4. Kaur R, Sood A, Kanotra M, Arora S, Subramaniyan V, Bhatia S, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54531-54550.
    PMID: 34435290 DOI: 10.1007/s11356-021-16060-1
    Nutrition plays a significant role in the prevention and treatment of common diseases. Some superb dietary choices such as functional foods and nutriments can surely help fight against certain diseases and provide various advantages to an individual's health. Plants have been regarded as a primary source of highly effective conventional drugs leading to the development of potential novel agents, which may boost the treatment. Growing demand for functional foods acts as an aid for the producers to expand in agriculture and pave the way for innovation and research by the nutraceutical industry. The given review highlights how various functional foods such as tomatoes, chocolates, garlic and flaxseed are currently being defined, their sources, benefit in treating various ailments and the challenges with their use.
  5. Kew GS, Soh AYS, Lee YY, Gotoda T, Li YQ, Zhang Y, et al.
    World J Gastrointest Oncol, 2021 Apr 15;13(4):279-294.
    PMID: 33889279 DOI: 10.4251/wjgo.v13.i4.279
    BACKGROUND: Major societies provide differing guidance on management of Barrett's esophagus (BE), making standardization challenging.

    AIM: To evaluate the preferred diagnosis and management practices of BE among Asian endoscopists.

    METHODS: Endoscopists from across Asia were invited to participate in an online questionnaire comprising eleven questions regarding diagnosis, surveillance and management of BE.

    RESULTS: Five hundred sixty-nine of 1016 (56.0%) respondents completed the survey, with most respondents from Japan (n = 310, 54.5%) and China (n = 129, 22.7%). Overall, the preferred endoscopic landmark of the esophagogastric junction was squamo-columnar junction (42.0%). Distal palisade vessels was preferred in Japan (59.0% vs 10.0%, P < 0.001) while outside Japan, squamo-columnar junction was preferred (59.5% vs 27.4%, P < 0.001). Only 16.3% of respondents used Prague C and M criteria all the time. It was never used by 46.1% of Japanese, whereas 84.2% outside Japan, endoscopists used it to varying extents (P < 0.001). Most Asian endoscopists (70.8%) would survey long-segment BE without dysplasia every two years. Adherence to Seattle protocol was poor with only 6.3% always performing it. 73.2% of Japanese never did it, compared to 19.3% outside Japan (P < 0.001). The most preferred (74.0%) treatment of non-dysplastic BE was proton pump inhibitor only when the patient was symptomatic or had esophagitis. For BE with low-grade dysplasia, 6-monthly surveillance was preferred in 61.9% within Japan vs 47.9% outside Japan (P < 0.001).

    CONCLUSION: Diagnosis and management of BE varied within Asia, with stark contrast between Japan and outside Japan. Most Asian endoscopists chose squamo-columnar junction to be the landmark for esophagogastric junction, which is incorrect. Most also did not consistently use Prague criteria, and Seattle protocol. Lack of standardization, education and research are possible reasons.

  6. Kohli S, Bhatia S
    Biomed J, 2015 May-Jun;38(3):244-9.
    PMID: 25355393 DOI: 10.4103/2319-4170.143519
    Proper function, esthetics, and cost are the prime factors to be considered while selecting bridge veneering materials. The purpose of the study is to evaluate color durability of acrylic veneer materials after immersion in common beverages at different time intervals.
  7. Kohli S, Bhatia S, Kaur A, Rathakrishnan T
    Indian J Dent, 2015;6(4):167-71.
    PMID: 26752875 DOI: 10.4103/0975-962X.168518
    The aim of the study was to assess the awareness of the patients regarding implant-retained prosthesis as an option for tooth replacement and the knowledge about tooth replacement as a whole including source of information and attitude towards it amongst Malaysian population.
  8. Kohli S, Bhatia S
    Eur J Prosthodont Restor Dent, 2016 12;24(4):170.
    PMID: 28510369 DOI: 10.1922/EJPRD_01650kohli01
    Sir, I write in regard to Nayar S et al article 'The Effect of a Radiation Positioning Stent (RPS) in the Reduction of Radiation Dosage to the Opposing Jaw and Maintenance of Mouth opening after Radiation Therapy'. I wholeheartedly agree to that patients undergoing radio-therapy who had an Radiation Positioning Stent (RPS) would show a significant reduction in radiation dosage to the opposing jaw and maintained their mouth opening in the short-term. As we know that oral cancer has emerged to be one of most deadliest cancer nowadays.
  9. Kohli S, Bhatia S, Al-Haddad A, Pulikkotil SJ, Jamayet NB
    J Prosthodont, 2022 Feb;31(2):102-114.
    PMID: 34516686 DOI: 10.1111/jopr.13433
    PURPOSE: This is a systematic review to identify the incidence of pulp necrosis and/or periapical changes among vital teeth which are used as an abutment for crown and fixed partial dentures (FPDs).

    MATERIALS AND METHODS: Two reviewers independently searched two electronic databases, PubMed and Scopus. The search was complemented from references of included studies and published reviews. Studies published in the English language through January 2021 that had assessed and documented the clinical and radiographic failure of crown or FPD in vital permanent teeth due to pulpal or periapical pathology with a follow-up of at least 12 months were selected. Data screening, data collection and extraction of data was performed. Quality of studies involved was analyzed using the Newcastle-Ottawa Quality Assessment Scale for cohort studies. Meta-analysis was done using random effects model. Publication bias was assessed using funnel plots.

    RESULTS: Electronic searches provided 10,075 records among which 20 studies were selected for systematic review and 7 studies were selected for meta-analysis. With respect to quality assessment, all the studies involved were considered as high quality as the score in scale ranged between 6 and 9 as per the Newcastle-Ottawa Quality Assessment Scale for cohort studies. The meta-analyses showed that there was no statistically significant difference in the incidence of the loss of pulp vitality or pulp necrosis through clinical and radiographic examination with the follow up period of 5 years: p < 0.001, 95% CI: 0.96-1.00, I2 = 77.84%; 10 years: p < 0.001, 95% CI: 0.88-0.95, I2 = 93.59%; 15 years: p < 0.001, 95% CI: 0.92-0.96, I2 = 94.83%; and 20 years: p < 0.001, 95% CI: 0.94-0.96, I2 = 95.01%.

    CONCLUSIONS: The meta-analysis revealed clinical and radiographic success rate ranging between 92% to 98% at different follow up periods ranging between 5 years and 20 years. Future high-quality randomized clinical controlled trials with a larger population are required to confirm the evidence as only observational studies were considered in this paper.

  10. Kohli S, Bhatia S, Banavar SR, Al-Haddad A, Kandasamy M, Qasim SSB, et al.
    Sci Rep, 2023 Mar 13;13(1):4181.
    PMID: 36914760 DOI: 10.1038/s41598-023-31125-6
    To formulate a dental bleaching agent with strawberry extract that has potent bleaching properties and antimicrobial efficacy. Enamel specimens (3 × 3 × 2 mm3) were prepared. Quaternary Ammonium Silane (CaC2 enriched) was homogenized with fresh strawberries: Group 1: supernatant strawberry (10 g) extract 
  11. Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, et al.
    PMID: 35147886 DOI: 10.1007/s11356-022-19082-5
    The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
  12. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
  13. Lim S, Hoong SS, Teong LK, Bhatia S
    Bioresour Technol, 2010 Sep;101(18):7180-3.
    PMID: 20395131 DOI: 10.1016/j.biortech.2010.03.134
    The novel biodiesel production technology using supercritical reactive extraction from Jatropha curcas L. oil seeds in this study has a promising role to fill as a more cost-effective processing technology. Compared to traditional biodiesel production method, supercritical reactive extraction can successfully carry out the extraction of oil and subsequent esterification/transesterification process to fatty acid methyl esters (FAME) simultaneously in a relatively short total operating time (45-80 min). Particle size of the seeds (0.5-2.0 mm) and reaction temperature/pressure (200-300 degrees C) are two primary factors being investigated. With 300 degrees C reaction temperature, 240 MPa operating pressure, 10.0 ml/g methanol to solid ratio and 2.5 ml/g of n-hexane to seed ratio, optimum oil extraction efficiency and FAME yield can reach up to 105.3% v/v and 103.5% w/w, respectively which exceeded theoretical yield calculated based on n-hexane Soxhlet extraction of Jatropha oil seeds.
  14. Ling CM, Mohamed AR, Bhatia S
    Chemosphere, 2004 Nov;57(7):547-54.
    PMID: 15488916
    TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.
  15. Mashitah, Zulfadhly Z, Bhatia S
    PMID: 10595446
    Non-living biomass of Pycnoporus sanguineus has an ability to take up lead,copper and cadmium ions from an aqueous solution. The role played by various functional groups in the cell wall and the mechanism uptake of lead, copper and cadmium by Pycnoporus sanguineus were investigated. Modification of the functional groups such as lipids, carboxylic and amino was done through chemical pretreatment in order to study their role in biosorption of metal ions. Results showed that the chemical modification of these functional groups has modified the ability of biomass to remove lead, copper and cadmium ions from the solution. Scanning electron microscopy was also used to study the morphological structure of the biomass before and after adsorption. The electron micrograph indicated that the structure of biomass changed due to the adsorption of the metals onto the cell walls. Furthermore, the X-ray energy dispersion analysis (EDAX) showed that the calcium ion present in the cell wall of biomass was released and replaced by lead ions. This implied that an ion exchange is one of the principal mechanisms for metal biosorption.
  16. Mashitah, Zulfadhly Z, Bhatia S
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):429-33.
    PMID: 10595444
    The equilibrium sorption capacity of a macro-fungi, Pycnoporus sanguineus biomass was studied using a single-metal system comprising copper ions. The rate and extent for the removal of copper were subjected to environmental parameters such as pH, biomass loading, temperature, and contact time. Results showed that the uptake of copper increased as the pH increased. However, as the biomass loading increased, the amount of metal uptake decreased. Instead, temperature does not have a significant effect on the metal uptake, especially between 30 to 40 degrees C. A maximum adsorption of copper ions was also observed within 15 minutes of reaction time for the entire sample tested. Furthermore, pre-treatment with sodium bicarbonate and boiling water significantly improved the sorption capacity of copper by Pycnoporus sanguineus.
  17. Mashitah MD, Yus Azila Y, Bhatia S
    Bioresour Technol, 2008 Jul;99(11):4742-8.
    PMID: 17981460
    Biosorption of cadmium (II) ions from aqueous solution onto immobilized cells of Pycnoporus sanguineus (P. sanguineus) was investigated in a batch system. Equilibrium and kinetic studies were conducted by considering the effect of pH, initial cadmium (II) concentration, biomass loading and temperature. Results showed that the uptake of cadmium (II) ions increased with the increase of initial cadmium (II) concentration, pH and temperature. Langmuir, Freundlich and Redlich-Peterson isotherm models were used to analyze the equilibrium data at different temperatures. Langmuir isotherm model described the experimental data well followed by Redlich-Peterson and Freundlich isotherm models. Biosorption kinetics data were fitted using pseudo-first, pseudo-second-order and intraparticle diffusion. It was found that the kinetics data fitted well the pseudo-second-order followed by intraparticle diffusion. Thermodynamic parameters such as standard Gibbs free energy (Delta G0), standard enthalpy (Delta H0) and standard entropy (Delta S0) were evaluated. The result showed that biosorption of cadmium (II) ions onto immobilized cells of P. sanguineus was spontaneous and endothermic nature.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links