Displaying publications 21 - 40 of 44 in total

Abstract:
Sort:
  1. Tan HP, Wong DZ, Ling SK, Chuah CH, Kadir HA
    Fitoterapia, 2012 Jan;83(1):223-9.
    PMID: 22093753 DOI: 10.1016/j.fitote.2011.10.019
    The galloylated cyanogenic glucosides based on prunasin (1-7), gallotannins (8-14), ellagitannins (15-17), ellagic acid derivatives (18, 19) and gallic acid (20) isolated from the leaves of Phyllagathis rotundifolia (Melastomataceae) were investigated for their neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced oxidative damage in NG108-15 hybridoma cell line. Among these compounds, the gallotannins and ellagitannins exhibited remarkable neuroprotective activities against oxidative damage in vitro as compared to galloylated cyanogenic glucosides and ellagic acid derivatives in a dose-dependent manner. They could be explored further as potential natural neuroprotectors in various remedies of neurodegenerative diseases.
  2. Ng MH, Choo YM, Ma AN, Chuah CH, Hashim MA
    Lipids, 2004 Oct;39(10):1031-5.
    PMID: 15691027
    Previous reports showed that vitamin E in palm oil consists of various isomers of tocopherols and tocotrienols [alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol), and this is normally analyzed using silica column HPLC with fluorescence detection. In this study, an HPLC-fluorescence method using a C30 silica stationary phase was developed to separate and analyze the vitamin E isomers present in palm oil. In addition, an alpha-tocomonoenol (alpha-T1) isomer was quantified and characterized by MS and NMR. (alpha-T1 constitutes about 3-4% (40+/-5 ppm) of vitamin E in crude palm oil (CPO) and is found in the phytonutrient concentrate (350+/-10 ppm) from palm oil, whereas its concentration in palm fiber oil (PFO) is about 11% (430+/-6 ppm). The relative content of each individual vitamin E isomer before and after interesterification/transesterification of CPO to CPO methyl esters, followed by vacuum distillation of CPO methyl esters to yield the residue, remained the same except for alpha-T and gamma-T3. Whereas alpha-T constitutes about 36% of the total vitamin E in CPO, it is present at a level of 10% in the phytonutrient concentrate. On the other hand, the composition of gamma-T3 increases from 31% in CPO to 60% in the phytonutrient concentrate. Vitamin is present at 1160+/-43 ppm, and its concentrations in PFO and the phytonutrient concentrate are 4,040+/-41 and 13,780+/-65 ppm, respectively. The separation and quantification of alpha-T1 in palm oil will lead to more in-depth knowledge of the occurrence of vitamin E in palm oil.
  3. Choo YM, Ma AN, Chuah CH, Khor HT, Bong SC
    Lipids, 2004 Jun;39(6):561-4.
    PMID: 15554155
    The concentration of vitamin E isomers, namely, alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocotrienol, and delta-tocotrienol in palm mesocarp at 4, 8, 12, 16, and 20 wk after anthesis (WAA) were quantified using HPLC coupled with fluorescence detection. alpha-T was detected throughout the palm fruits' maturation process, whereas unsaturated tocotrienols were found only in ripe palm fruits. These developmental results indicate that tocotrienols are synthesized between 16 and 20 WAA.
  4. Lau HL, Puah CW, Choo YM, Ma AN, Chuah CH
    Lipids, 2005 May;40(5):523-8.
    PMID: 16094863
    This paper discusses a rapid GC-FID technique for the simultaneous quantitative analysis of FFA, MAG, DAG, TAG, sterols, and squalene in vegetable oils, with special reference to palm oil. The FFA content determined had a lower SE compared with a conventional titrimetric method. Squalene and individual sterols, consisting of beta-sitosterol, stigmasterol, campesterol, and cholesterol, were accurately quantified without any losses. This was achieved through elimination of tedious conventional sample pretreatments, such as saponification and preparative TLC. With this technique, the separation of individual MAG, consisting of 16:0, 18:0, and 18:1 FA, and the DAG species, consisting of the 1,2(2,3)- and 1,3-positions, was sufficient to enable their quantification. This technique enabled the TAG to be determined according to their carbon numbers in the range of C44 to C56. Comparisons were made with conventional methods, and the results were in good agreement with those reported in the literature.
  5. Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA
    Lipids, 2005 Apr;40(4):429-32.
    PMID: 16028723
    The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.
  6. Goh PS, Ng MH, Choo YM, Amru NB, Chuah CH
    Molecules, 2015;20(11):19936-46.
    PMID: 26556328 DOI: 10.3390/molecules201119666
    In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.
  7. Mhd Haniffa MAC, Ching YC, Illias HA, Munawar K, Ibrahim S, Nguyen DH, et al.
    Carbohydr Polym, 2021 Feb 01;253:117245.
    PMID: 33279000 DOI: 10.1016/j.carbpol.2020.117245
    Cellulose with ample hydroxyl groups is considered as a promising supportive biopolymer for fabricating cellulose supported promising magnetic sorbents (CMS) for magnetic solid-phase extraction (MSPE). The easy recovery via external magnetic field, and recyclability of CMS, associated with different types and surface modifications of cellulose has made them a promising sorbent in the field of solid-phase extraction. CMS based sorbent can offer improved adsorption and absorption capabilities due to its high specific surface area, porous structure, and magnetic attraction feature. This review mainly focuses on the fabrication strategies of CMS using magnetic nanoparticles (MNPs) and various forms of cellulose as a heterogeneous and homogeneous solution either in alkaline mediated urea or Ionic liquids (ILs). Moreover, CMS will be elaborated based on their structures, synthesis, physical performance, and chemical attraction of MNPs and their MSPE in details. The advantages, challenges, and prospects of CMS in future applications are also presented.
  8. Haniffa MACM, Ching YC, Chuah CH, Kuan YC, Liu DS, Liou NS
    Polymers (Basel), 2017 May 01;9(5).
    PMID: 30970841 DOI: 10.3390/polym9050162
    Non-isocyanate polyurethane (NIPU) was prepared from Jatropha curcas oil (JCO) and its alkyd resin via curing with different diamines. The isocyanate-free approach is a green chemistry route, wherein carbon dioxide conversion plays a major role in NIPU preparation. Catalytic carbon dioxide fixation can be achieved through carbonation of epoxidized derivatives of JCO. In this study, 1,3-diaminopropane (DM) and isophorone diamine (IPDA) were used as curing agents separately. Cyclic carbonate conversion was catalyzed by tetrabutylammonium bromide. After epoxy conversion, carbonated JCO (CJCO) and carbonated alkyd resin (CC-AR) with carbonate contents of 24.9 and 20.2 wt %, respectively, were obtained. The molecular weight of CJCO and CC-AR were determined by gel permeation chromatography. JCO carbonates were cured with different amine contents. CJCO was blended with different weight ratios of CC-AR to improve its characteristics. The cured NIPU film was characterized by spectroscopic techniques, differential scanning calorimetry, and a universal testing machine. Field emission scanning electron microscopy was used to analyze the morphology of the NIPU film before and after solvent treatment. The solvent effects on the NIPU film interfacial surface were investigated with water, 30% ethanol, methyl ethyl ketone, 10% HCl, 10% NaCl, and 5% NaOH. NIPU based on CCJO and CC-AR (ratio of 1:3) with IPDA crosslink exhibits high glass transition temperature (44 °C), better solvent and chemical resistance, and Young's modulus (680 MPa) compared with the blend crosslinked with DM. Thus, this study showed that the presence of CC-AR in CJCO-based NIPU can improve the thermomechanical and chemical resistance performance of the NIPU film via a green technology approach.
  9. Udenni Gunathilake TMS, Ching YC, Ching KY, Chuah CH, Abdullah LC
    Polymers (Basel), 2017 Apr 29;9(5).
    PMID: 30970839 DOI: 10.3390/polym9050160
    Extensive employment of biomaterials in the areas of biomedical and microbiological applications is considered to be of prime importance. As expected, oil based polymer materials were gradually replaced by natural or synthetic biopolymers due to their well-known intrinsic characteristics such as biodegradability, non-toxicity and biocompatibility. Literature on this subject was found to be expanding, especially in the areas of biomedical and microbiological applications. Introduction of porosity into a biomaterial broadens the scope of applications. In addition, increased porosity can have a beneficial effect for the applications which exploit their exceptional ability of loading, retaining and releasing of fluids. Different applications require a unique set of pore characteristics in the biopolymer matrix. Various pore morphologies have different characteristics and contribute different performances to the biopolymer matrix. Fabrication methods for bio-based porous materials more related to the choice of material. By choosing the appropriate combination of fabrication technique and biomaterial employment, one can obtain tunable pore characteristic to fulfill the requirements of desired application. In our previous review, we described the literature related to biopolymers and fabrication techniques of porous materials. This paper we will focus on the biomedical and microbiological applications of bio-based porous materials.
  10. Mhd Haniffa MAC, Ching YC, Abdullah LC, Poh SC, Chuah CH
    Polymers (Basel), 2016 Jun 29;8(7).
    PMID: 30974522 DOI: 10.3390/polym8070246
    The properties of a composite material depend on its constituent materials such as natural biopolymers or synthetic biodegradable polymers and inorganic or organic nanomaterials or nano-scale minerals. The significance of bio-based and synthetic polymers and their drawbacks on coating film application is currently being discussed in research papers and articles. Properties and applications vary for each novel synthetic bio-based material, and a number of such materials have been fabricated in recent years. This review provides an in-depth discussion on the properties and applications of biopolymer-based nanocomposite coating films. Recent works and articles are cited in this paper. These citations are ubiquitous in the development of novel bionanocomposites and their applications.
  11. Mhd Haniffa MAC, Munawar K, Ching YC, Illias HA, Chuah CH
    Chem Asian J, 2021 Jun 01;16(11):1281-1297.
    PMID: 33871151 DOI: 10.1002/asia.202100226
    New and emerging demand for polyurethane (PU) continues to rise over the years. The harmful isocyanate binding agents and their integrated PU products are at the height of environmental concerns, in particular PU (macro and micro) pollution and their degradation problems. Non-isocyanate poly(hydroxy urethane)s (NIPUs) are sustainable and green alternatives to conventional PUs. Since the introduction of NIPU in 1957, the market value of NIPU and its hybridized materials has increased exponentially in 2019 and is expected to continue to rise in the coming years. The secondary hydroxyl groups of these NIPU's urethane moiety have revolutionized them by allowing for adequate pre/post functionalization. This minireview highlights different strategies and advances in pre/post-functionalization used in biobased NIPU. We have performed a comprehensive evaluation of the development of new ideas in this field to achieve more efficient synthetic biobased hybridized NIPU processes through selective and kinetic understanding.
  12. Chuah CH, Ong YC, Kong BH, Woo YY, Wong PS, Leong KN, et al.
    J R Coll Physicians Edinb, 2020 Jun;50(2):138-140.
    PMID: 32568283 DOI: 10.4997/JRCPE.2020.211
    Talaromycosis typically occurs as an opportunistic infection among immunocompromised individuals. Infection caused by species other than T. marneffei is uncommon. While most reported cases describe infection in the lungs, we report an extremely rare intracranial Talaromyces species infection. This 61-year-old with end-stage renal disease who was unwell for the previous two months, presented with fever and worsening confusion lasting for three days. Lumbar puncture was suggestive of meningitis. Cerebrospinal fluid (CSF) culture was later confirmed to be Penicillium chrysogenum. The patient was co-infected with Group B Streptococcus sepsis. He improved with amphotericin B and ceftriaxone and was discharged with oral itraconazole for four weeks. However, he died of unknown causes two weeks later at home. Talaromyces species infection in the central nervous system is uncommon. This case highlighted a rare but life-threatening fungal meningitis. Among the four reported cases worldwide, none of the patients survived.
  13. Gunathilake TMSU, Ching YC, Chuah CH, Hai ND, Nai-Shang L
    Pharm Res, 2020 Aug 30;37(9):178.
    PMID: 32864721 DOI: 10.1007/s11095-020-02910-z
    PURPOSE: Among various types of external stimuli-responsive DDS, electric-responsive DDS are more promising carriers as they exploit less complex, easily miniaturized electric signal generators and the possibility of fine-tuning the electric signals. This study investigates the use of intrinsically biocompatible biopolymers in electro-simulative drug delivery to enhance the release of poorly-soluble/non-ionic drug.

    METHODS: CMC/PLA/ZnO/CUR nanocomposite films were prepared by the dispersion of CMC and ZnO NPs in solubilized PLA/curcumin medium, followed by solvent casting step. Curcumin is poorly water-soluble and used as the model drug in this study. The films with different contents of CMC, PLA and ZnO NPs were characterized using FTIR, impedance spectroscopy, tensile testing and FESEM imaging. The in vitro drug release of the films was carried out in deionized water under DC electric field of 4.5 V.

    RESULTS: The ionic conductivity of the films increased with increasing the CMC concentration of the film. The addition of a small amount of ZnO NPs (2%) successfully restored the tensile properties of the film. In response to the application of the electric field, the composite films released drug with a near-linear profile. There was no noticeable amount of passive diffusion of the drug from the film with the absence of the electric field.

    CONCLUSION: The outcome of this study enabled the design of an electric-responsive nanocomposite platform for the delivery of poorly water-soluble/non-ionic drugs. Graphical abstract.

  14. Gunathilake TMSU, Ching YC, Uyama H, Nguyen DH, Chuah CH
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1522-1531.
    PMID: 34740692 DOI: 10.1016/j.ijbiomac.2021.10.215
    The investigation of protein-nanoparticle interactions contributes to the understanding of nanoparticle bio-reactivity and creates a database of nanoparticles for use in nanomedicine, nanodiagnosis, and nanotherapy. In this study, hen's egg white was used as the protein source to study the interaction of proteins with sulphuric acid hydrolysed nanocellulose (CNC). Several techniques such as FTIR, zeta potential measurement, UV-vis spectroscopy, compressive strength, TGA, contact angle and FESEM provide valuable information in the protein-CNC interaction study. The presence of a broader peak in the 1600-1050 cm-1 range of CNC/egg white protein FTIR spectrum compared to the 1600-1050 cm-1 range of CNC sample indicated the binding of egg white protein to CNC surface. The contact angle with the glass surface decreased with the addition of CNC to egg white protein. The FESEM EDX spectra showed a higher amount of N and Na on the surface of CNC. It indicates the density of protein molecules higher around CNC. The zeta potential of CNC changed from -26.7 ± 0.46 to -21.7 ± 0.2 with the introduction of egg white protein due to the hydrogen bonding, polar bonds and electrostatic interaction between surface CNC and protein. The compressive strength of the egg white protein films increased from 0.064 ± 0.01 to 0.36 ± 0.02 MPa with increasing the CNC concentration from 0 to 4.73% (w/v). The thermal decomposition temperature of CNC/egg white protein decreased compared to egg white protein thermal decomposition temperature. According to UV-Vis spectroscopy, the far-UV light (207-222nm) absorption peak slightly changed in the CNC/egg white protein spectrum compared to the egg white protein spectrum. Based on the results, the observations of protein nanoparticle interactions provide an additional understanding, besides the theoretical simulations from previous studies. Also, the results indicate to aim CNC for the application of nanomedicine and nanotherapy. A new insight given by us in this research assumes a reasonable solution to these crucial applications.
  15. Gunathilake TMSU, Ching YC, Uyama H, Hai ND, Chuah CH
    Cellulose (Lond), 2022 Jan 04.
    PMID: 35002106 DOI: 10.1007/s10570-021-04391-8
    Nanocellulose/polyvinyl alcohol/curcumin (CNC/PVA/curcumin) nanoparticles with enhanced drug loading properties were developed by the dispersion of nanocellulose in curcumin/polyvinyl alcohol aqueous medium. Due to the physical and chemical nature of sulphuric acid hydrolyzed nanocellulose and the antiviral properties of curcumin, the possibility of using these nanoparticles as an inhalable nanotherapeutic for the treatment of coronavirus disease 2019 (COVID-19) is discussed. The adsorption of curcumin and PVA into nanocellulose, and the presence of anionic sulphate groups, which is important for the interaction with viral glycoproteins were confirmed by Fourier transform infrared (FTIR) spectroscopy. FESEM images showed that the diameter of nanocellulose ranged from 50 to 100 nm, which is closer to the diameter (60-140 nm) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The solubility of poorly water-soluble curcumin was increased from 40.58 ± 1.42 to 313.61 ± 1.05 mg/L with increasing the PVA concentration from 0.05 to 0.8% (w/v) in aqueous medium. This is a significant increase in the solubility compared to curcumin's solubility in carboxymethyl cellulose medium in our previous study. The drug loading capacity increased by 22-fold with the addition of 0.8% PVA to the nanocellulose dispersed curcumin solution. The highest drug release increased from 1.25 ± 0.15 mg/L to 17.11 ± 0.22 mg/L with increasing the PVA concentration from 0 to 0.8% in the drug-loaded medium. Future studies of this material will be based on the antiviral efficacy against SARS-CoV-2 and cell cytotoxicity studies. Due to the particulate nature, morphology and size of SARS-CoV-2, nanoparticle-based strategies offer a strong approach to tackling this virus. Hence, we believe that the enhanced loading of curcumin in nanocellulose will provide a promising nano-based solution for the treatment of COVID-19.
  16. Choo K, Ching YC, Chuah CH, Julai S, Liou NS
    Materials (Basel), 2016 Jul 29;9(8).
    PMID: 28773763 DOI: 10.3390/ma9080644
    In this study microcrystalline cellulose (MCC) was oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The treated cellulose slurry was mechanically homogenized to form a transparent dispersion which consisted of individual cellulose nanofibers with uniform widths of 3-4 nm. Bio-nanocomposite films were then prepared from a polyvinyl alcohol (PVA)-chitosan (CS) polymeric blend with different TEMPO-oxidized cellulose nanofiber (TOCN) contents (0, 0.5, 1.0 and 1.5 wt %) via the solution casting method. The characterizations of pure PVA/CS and PVA/CS/TOCN films were performed in terms of field emission scanning electron microscopy (FESEM), tensile tests, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results from FESEM analysis justified that low loading levels of TOCNs were dispersed uniformly and homogeneously in the PVA-CS blend matrix. The tensile strength and thermal stability of the films were increased with the increased loading levels of TOCNs to a maximum level. The thermal study indicated a slight improvement of the thermal stability upon the reinforcement of TOCNs. As evidenced by the FTIR and XRD, PVA and CS were considered miscible and compatible owing to hydrogen bonding interaction. These analyses also revealed the good dispersion of TOCNs within the PVA/CS polymer matrix. The improved properties due to the reinforcement of TOCNs can be highly beneficial in numerous applications.
  17. Yahya M, Sakti SCW, Fahmi MZ, Chuah CH, Lee HV
    Int J Biol Macromol, 2024 Feb;257(Pt 2):128696.
    PMID: 38072349 DOI: 10.1016/j.ijbiomac.2023.128696
    This study focuses on the preparation of mangosteen rind-derived nanocellulose via green ascorbic acid hydrolysis. Subsequently, milk protein-grafted nanocellulose particles were developed as a renewable Pickering emulsifier for water-oil stabilization. The stabilizing efficiency of modified nanocellulose (NC-S) at different caseinate (milk protein) concentrations (1.5, 3.0, and 4.0 % w/v) was tested in a water-in-oil emulsion (W/O ratio of 40:60). At a concentration 3.0 % w/v of caseinate (3.0NC-S), the emulsion exhibited a stronger network of adsorption between water, Pickering emulsifier, and oil. This resulted in reduced oil droplet flocculation, increased stability over a longer period, and favorable emulsifying properties, as depicted in the creaming index profile, oil droplet distribution, and rheology analysis. Since 3.0NC-S demonstrated the best colloidal stability, further focus will be placed on its microstructural properties, comparing them with those of mangosteen rind (MG), cellulose, and nanocellulose (NC-L). The XRD profile indicated that both NC-L and NC-S possessed a cellulose nanocrystal structure characterized as type I beta with a high crystallinity index above 60 %. Morphology investigation shown that the NC-L present in the spherical shape of particles with nanosized ranging at diameters of 11.27 ± 0.50 nm and length 11.76 ± 0.46 nm, while modified NC-S showed increase sized at 14.26 ± 4.60 nm and length 14.96 ± 4.94 nm. The increment of particle sizes from NC-L to NC-S indicated 2.82 × 10-15 mg/m2 of surface protein coverage by caseinate functional groups.
  18. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Rahman NA, Liou NS
    Int J Biol Macromol, 2020 May 07;158:670-688.
    PMID: 32389655 DOI: 10.1016/j.ijbiomac.2020.05.010
    The limitations of existing drug delivery systems (DDS) such as non-specific bio-distribution and poor selectivity have led to the exploration of a variety of carrier platforms to facilitate highly desirable and efficient drug delivery. Stimuli-responsive DDS are one of the most versatile and innovative approach to steer the compounds to the intended sites by exploiting their responsiveness to a range of various triggers. Preparation of stimuli-responsive DDS using celluloses and their derivatives offer a remarkable advantage over conventional polymer materials. In this review, we highlight on state-of-art progress in developing cellulose/cellulose hybrid stimuli-responsive DDS, which covers the preparation techniques, physicochemical properties, basic principles and, mechanisms of stimuli effect on drug release from various types of cellulose based carriers, through recent innovative investigations. Attention has been paid to endogenous stimuli (pH, temperature, redox gradient and ionic-strength) responsive DDS and exogenous stimuli (light, magnetic field and electric field) responsive DDS, where the cellulose-based materials have been extensively employed. Furthermore, the current challenges and future prospects of these DDS are also discussed at the end.
  19. Haniffa MACM, Illias HA, Chee CY, Ibrahim S, Sandu V, Chuah CH
    ACS Omega, 2020 May 12;5(18):10315-10326.
    PMID: 32426588 DOI: 10.1021/acsomega.9b04388
    Hybrid bionanocomposite coating systems (HBCSs) are green polymer materials consisting of an interface between a coating matrix and nanoparticles. The coating matrix was prepared by using a nonisocyanate poly(hydroxyl urethane) (NIPHU) prepolymer crosslinked via 1,3-diaminopropane and epoxidized Jatropha curcas oil. TEMPO-oxidized cellulose nanoparticles (TARC) were prepared from microcrystalline cellulose, and (3-aminopropyl)trimethoxysilane (APTMS)-coated ZnO nanoparticles (APTMS-ZnO) and their suspensions were synthesized separately. The suspensions at different weight ratios were incorporated into the coating matrix to prepare a series of HBCSs. FT-IR, 1H-NMR, 13C-NMR, XRD, SEM, and TEM were used to confirm the chemical structures, morphology, and elements of the coating matrix, nanomaterials, and HBCSs. The thermomechanical properties of the HBCSs were investigated by TGA-DTG and pencil hardness analyses. The UV and IR absorption spectra of the HBCSs were obtained using UV-vis spectroscopy and FTIR spectroscopy, respectively. The HBCSs exhibited good thermal stability at about 200 °C. The degradation temperature at 5% mass loss of all samples was over around 280 °C. The HBCSs exhibited excellent UV block and IR active properties with a stoichiometric ratio of the NIPHU prepolymer and EJCO of 1:1 (wt/wt) containing 5 wt % TARC and 15 wt % APTMS-ZnO nanoparticles. It was observed that the sample with 5 wt % TARC and 15 wt % APTMS-ZnO (HBCS-2) exhibited a uniform crosslinking and reinforcement network with a T onset of 282 °C. This sample has successfully achieved good coating hardness and excellent UV and IR absorption.
  20. Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH
    Int J Biol Macromol, 2024 Apr;264(Pt 2):130525.
    PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525
    To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links