METHODS: A cross-sectional online survey was conducted among employees in two multinational banks in Malaysia between April and July 2019. Screening for migraine was conducted using the self-administered ID-Migraine™ questionnaire. Migraine-related disability (MIDAS) and headache frequency were recorded. Impact of migraine on work productivity and activities were evaluated using the Work Productivity and Activity Impairment (WPAI) questionnaire.
RESULTS: Of the 1268 employees who submitted complete responses, 47.2% (n = 598) were screened positive for migraine. Strikingly, the mean percent productivity loss at work (presenteeism) was almost 20-fold higher than the mean percent work time missed due to migraine (absenteeism) (39.1% versus 1.9%). The mean percent productivity loss in regular activity (activity impairment) and overall work productivity loss (work impairment) was 38.4% and 39.9%, respectively. It was also found that the costs related to presenteeism (MYR 5392.6) (US$1296) was 3.5-fold higher than absenteeism (MYR1,548.3) (US$370). Highest monetary loss related to presenteeism was reported in migraineurs with frequency of headache of above 3 days (MYR 25,691.2) (US$6176), whereas highest monetary loss related to absenteeism was reported in migraineurs with MIDAS grade IV (MYR 12,369.1) (US$2973). Only 30% of migraineurs of MIDAS grade IV reported taking prescribed medication. Notably, a vast majority (96%) of migraineurs who had three or lower episodes of migraine per month did not seek treatment.
CONCLUSION: The significant impact of migraine on work productivity and regular activity, appears to lead to substantial monetary loss attributed to not only absenteeism, but more importantly to presenteeism. This study also highlights the unmet needs in migraine management among employees in the banking sector.
RESULTS: Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process.
CONCLUSIONS: A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.
Methods: In vitro, physicochemical properties of the Stattic-entrapped C-PLGA nanoparticles (S@C-PLGA) and Stattic-entrapped PLGA nanoparticles (S@PLGA, control) in terms of size, zeta potential, polydispersity index, drug loading, entrapment efficiency, Stattic release in different medium and cytotoxicity were firstly evaluated. The in vitro antimigration properties of the nanoparticles on breast cancer cell lines were then studied by Scratch assay and Transwell assay. Study on the in vivo antitumor efficacy and antimetastatic properties of S@C-PLGA compared to Stattic were then performed on 4T1 tumor bearing mice.
Results: The S@C-PLGA nanoparticles (141.8 ± 2.3 nm) was hemocompatible and exhibited low Stattic release (12%) in plasma. S@C-PLGA also exhibited enhanced in vitro anti-cell migration potency (by >10-fold in MDA-MB-231 and 5-fold in 4T1 cells) and in vivo tumor growth suppression (by 33.6%) in 4T1 murine metastatic mammary tumor bearing mice when compared to that of the Stattic-treated group. Interestingly, the number of lung and liver metastatic foci was found to reduce by 50% and 56.6%, respectively, and the average size of the lung metastatic foci was reduced by 75.4% in 4T1 tumor-bearing mice treated with S@C-PLGA compared to Stattic-treated group (p < 0.001).
Conclusion: These findings suggest the usage of C-PLGA nanocarrier to improve the delivery and efficacy of antimetastatic agents, such as Stattic, in cancer therapy.