Affiliations 

  • 1 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
  • 2 Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
  • 3 Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
  • 4 Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organization, Lyon, France
  • 5 School of Medicine, International Medical University, Kuala Lumpur, Malaysia
J Cell Mol Med, 2020 Oct;24(20):12188-12198.
PMID: 32926495 DOI: 10.1111/jcmm.15876

Abstract

Prostate cancer (PCa) is the most common malignancy and is the second leading cause of cancer among men globally. Using a kinome-wide lentiviral small-hairpin RNA (shRNA) library screen, we identified phosphoinositide-dependent kinase-1 (PDPK1) as a potential mediator of cell survival in PCa cells. We showed that knock-down of endogenous human PDPK1 induced significant tumour-specific cell death in PCa cells (DU145 and PC3) but not in the normal prostate epithelial cells (RWPE-1). Further analyses revealed that PDPK1 mediates cancer cell survival predominantly via activation of serum/glucocorticoid-regulated kinase 3 (SGK3). Knock-down of endogenous PDPK1 in DU145 and PC3 cells significantly reduced SGK3 phosphorylation while ectopic expression of a constitutively active SGK3 completely abrogated the apoptosis induced by PDPK1. In contrast, no such effect was observed in SGK1 and AKT phosphorylation following PDPK1 knock-down. Importantly, PDPK1 inhibitors (GSK2334470 and BX-795) significantly reduced tumour-specific cell growth and synergized docetaxel sensitivity in PCa cells. In summary, our results demonstrated that PDPK1 mediates PCa cells' survival through SGK3 signalling and suggest that inactivation of this PDPK1-SGK3 axis may potentially serve as a novel therapeutic intervention for future treatment of PCa.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.