Displaying publications 21 - 40 of 288 in total

Abstract:
Sort:
  1. Bhat AA, Gupta G, Alharbi KS, Afzal O, Altamimi ASA, Almalki WH, et al.
    Pharmaceutics, 2022 Dec 13;14(12).
    PMID: 36559281 DOI: 10.3390/pharmaceutics14122788
    A primary illness that accounts for a significant portion of fatalities worldwide is cancer. Among the main malignancies, lung cancer is recognised as the most chronic kind of cancer around the globe. Radiation treatment, surgery, and chemotherapy are some medical procedures used in the traditional care of lung cancer. However, these methods lack selectivity and damage nearby healthy cells. Several polysaccharide-based nanomaterials have been created to transport chemotherapeutics to reduce harmful and adverse side effects and improve response during anti-tumour reactions. To address these drawbacks, a class of naturally occurring polymers called polysaccharides have special physical, chemical, and biological characteristics. They can interact with the immune system to induce a better immunological response. Furthermore, because of the flexibility of their structures, it is possible to create multifunctional nanocomposites with excellent stability and bioavailability for the delivery of medicines to tumour tissues. This study seeks to present new views on the use of polysaccharide-based chemotherapeutics and to highlight current developments in polysaccharide-based nanomedicines for lung cancer.
  2. Awasthi A, Kumar B, Gulati M, Vishwas S, Corrie L, Kaur J, et al.
    Pharm Res, 2022 Nov;39(11):2817-2829.
    PMID: 36195824 DOI: 10.1007/s11095-022-03401-z
    PURPOSE: The aim of current study is to formulate, optimize and characterize the developed formulation of Mesalamine-Curcumin Nanostructured Lipid Carriers (Mes-Cur NLCs).

    METHODS: It was formulated using high pressure homogenization followed by probe sonication and formulation variables were optimized using Central Composite Design. The particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug release, cytotoxicity on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells and efficacy on RAW264.7 cells for optimized formulation was determined.

    RESULTS: The PS, ZP and EE were found to be 85.26 nm, -23.7 ± 7.45 mV, 99.2 ± 2.62 % (Mes) and 84 ± 1.51 % (Cur), respectively. The good correlation between predicted and obtained value indicated suitability and reproducibility of experimental design. NLCs showed spherical shape as confirmed by TEM. In vitro drug release profile of prepared formulation showed that Mes exhibited 100 % release at 48 h, whereas Cur exhibited 82.23 ± 2.97% release at 120 h. Both the drugs exhibited sustained release upon incorporation into the NLCs. The absence of any significant cell death during MTT assay performed on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells indicated that NLCs' were safe for use. Furthermore, significant reduction in nitric oxide level during anti-inflammatory evaluation of formulation on RAW264.7 cells showed excellent potential for the formulation to treat inflammation. The formulation was found stable as no significant difference between the PS, ZP and EE of the fresh and aged NLCs was observed.

    CONCLUSION: The outcomes of study deciphered successful formulation of Mes-Cur NLCs.

  3. Aljabali AAA, Bakshi HA, Satija S, Metha M, Prasher P, Ennab RM, et al.
    Pharm Nanotechnol, 2020;8(4):323-353.
    PMID: 32811406 DOI: 10.2174/2211738508999200817163335
    BACKGROUND: The newly emerged coronavirus SARS-CoV-2, first reported in December 2019, has infected about five and a half million people globally and resulted in nearly 9063264 deaths until the 24th of June 2020. Nevertheless, the highly contagious virus has instigated an unimaginably rapid response from scientific and medical communities.

    OBJECTIVES: Pioneering research on molecular mechanisms underlying the viral transmission, molecular pathogenicity, and potential treatments will be highlighted in this review. The development of antiviral drugs specific to SARS-CoV-2 is a complicated and tedious process. To accelerate scientific discoveries and advancement, researchers are consolidating available data from associated coronaviruses into a single pipeline, which can be readily made available to vaccine developers.

    METHODS: In order to find studies evaluating the COVID-19 virus epidemiology, repurposed drugs and potential vaccines, web searches and bibliographical bases have been used with keywords that matches the content of this review.

    RESULTS: The published results of SARS-CoV-2 structures and interactomics have been used to identify potential therapeutic candidates. We illustrate recent publications on SARS-CoV-2, concerning its molecular, epidemiological, and clinical characteristics, and focus on innovative diagnostics technologies in the production pipeline. This objective of this review is to enhance the comprehension of the unique characteristics of SARS-CoV-2 and strengthen future control measures.

    Lay Summary: An innovative analysis is evaluating the nature of the COVID-19 pandemic. The aim is to increase knowledge of possible viral detection methods, which highlights several new technology limitations and advantages. We have assessed some drugs currently for patients (Lopinavir, Ritonavir, Anakinra and Interferon beta 1a), as the feasibility of COVID-19 specific antivirals is not presently known. The study explores the race toward vaccine development and highlights some significant trials and candidates in various clinical phases. This research addresses critical knowledge gaps by identifying repurposed drugs currently under clinical trials. Findings will be fed back rapidly to the researchers interested in COVID 19 and support the evidence and potential of possible therapeutics and small molecules with their mode of action.

  4. Rahul M, Piyoosh S, Tekade M, Atneriya U, Dua K, Hansbroe PM, et al.
    Pharm Nanotechnol, 2017 09 21.
    PMID: 28933273 DOI: 10.2174/2211738505666170921125549
    BACKGROUND: Nifedipine is a potential therapeutic agent for the treatment of cardiovascular disturbances, although it suffers from short half-life (t1/2, 2 hr).

    OBJECTIVE: To address the problem, we first prepared nifedipine loaded sustained releases microsponges and then formulated tablets for effective clinical application and patient compliance.

    METHOD: Preparations of microsponges were carried out using different composition of nifedipine and polymer (1:1, 1:2 and 1:3 % molar ratio) using emulsion solvent diffusion technique.

    RESULTS: The microsponges with molar ratio 1:3 (formulation code: MF-3) found optimized as revealed by analyzing surface morphology, better powder flow properties (angle of repose; 28.80 ± 0.9, Hausner ratio 1.15 ± 0.2, % compressibility 15.28 ± 0.5% and higher % drug content (80 ± 1.9 %). Different batches of tablets were then formulated incorporating MF-3 microsponges and different proportion (10-50 %) of microcrystalline cellulose and starch as additives. Among tablet formulations, batch composed of 48% of MF-3, 30% of MCC, 20 % of starch and 2 % of talc (TF-33), showed 92.73 ± 2.19 % drug release during 24 hr in vitro release study in comparison to other batches including commercial formulation which was found to be released completely in 20 hr. Further, stability analysis revealed good drug retention of loaded nifedipine as well as consistent in vitro release pattern over a period of 90 days at 40 ºC and 75% RH.

    CONCLUSION: The microsponge tablet delivery system was found to be superior concerning the therapeutic advantage as well as manufacturing feasibility of nifedipine.

  5. Dua K
    Pharm Nanotechnol, 2017 Aug 07.
    PMID: 28786352 DOI: 10.2174/2211738505666170808095258
    BACKGROUND: Respiratory tract being a non-invasive route of drug administration is gaining massive attention in the present time to achieve both local and the systemic effects. In order to achieve effective therapeutic effects of a drug in the pulmonary region, it requires challenging barriers like mucociliary clearance and uptake by macrophages. An effective drug delivery system delivers the therapeutically active moieties at the right time, rate and in a reproducible manner to target sites for the effectively the human illnesses. A major limitation associated with most of the currently available conventional and controlled release drug delivery devices is that not all the drug candidates are well absorbed uniformly locally or systemically.

    METHODS: We searched for the chitosan and its derivatives based nanocarrier systems for the pulmonary drug delivery. We focused on the applications of chitosan in the development of nanoparticles for the pulmonary drug delivery.

    RESULTS: Chitosan, a natural linear bio poly amino saccharide is playing a crucial role in the development of novel drug delivery systems (NDDS) such as nanoparticles in order to treat various respiratory diseases effectively by managing these difficulties due to its unique characteristic properties of biodegradability, biocompatibility, mucoadhesivity and its ability to enhance macromolecule permeation. It also aids in providing sustained and targeted effects, which are the primary requirements of an ideal pulmonary drug delivery system. This review highlights the applications and importance of chitosan with special emphasis on nanotechnology, particularly employed in various respiratory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and pulmonary fibrosis.

    CONCLUSIONS: This review will be of interest to both the biological and formulation scientists to have a quick snapshot on the utility of chitosan in pulmonary drug delivery systems. At present, there are no patented chitosan based controlled release products available with pulmonary drug delivery and therefore this area needs attention to explore the potential of this polymer in the area of respiratory research.

  6. Chellappan DK, Hansbro PM, Dua K, Hsu A, Gupta G, Ng ZY, et al.
    Pharm Nanotechnol, 2017;5(4):250-254.
    PMID: 28786351 DOI: 10.2174/2211738505666170808094635
    BACKGROUND: Vesicular systems like nanotechnology and liposomes are gaining tremendous attention lately in the field of respiratory diseases. These formulations enhance bioavailability of the drug candidate, which could be achieved through a novel drug delivery mechanism. Moreover, the therapeutic potential achieved through these systems is highly controllable over long durations of time providing better efficacy and patient compliance.

    OBJECTIVE: The objective of this paper is to review the recent literature on vesicular drug delivery systems containing curcumin.

    METHODS: We have collated and summarized various recent attempts made to develop different controlled release drug delivery systems containing curcumin which would be of great interest for herbal, formulation and biological scientists. There are several vesicular nanotechnological techniques involving curcumin which have been studied recently, targeting pulmonary diseases.

    RESULTS: Different vesicular systems containing curcumin are being studied for their therapeutic potential in different respiratory diseases. There has been a renewed interest in formulations containing curcumin recently, primarily owing to the broad spectrum therapeutic potential of this miracle substance. Various types of formulations, containing curcumin, targeting different bodily systems have recently emerged and, nevertheless, the search for newer frontiers with this drug goes on.

    CONCLUSION: This mini review, in this direction, tries to highlight the key research interventions employing vesicular systems of drug delivery with curcumin.

  7. Mathure D, Madan JR, Gujar KN, Tupsamundre A, Ranpise HA, Dua K
    Pharm Nanotechnol, 2018 01 29.
    PMID: 29380709 DOI: 10.2174/2211738506666180130105919
    Considering various merits associated with the nasal mucosa such large surface area, porous endothelial membrane, high blood flow, avoidance of first-pass metabolism, and ready accessibility leads to faster and higher drug absorption. Keeping these facts in mind, the objective of the present study was to develop Buspirone hydrochloride loaded niosomal in-situ nasal gel. Buspirone hydrochloride niosomal in-situ nasal gel was formulated, optimized and evaluated with the aim to deliver drug to the brain via intranasal route. Niosomes were prepared by thin film evaporation method and optimizedusing32 factorial design. The niosomes were characterized for particle size, zeta potential, entrapment efficiency and in-vitro drug release. Buspirone hydrochloride loaded niosomes were further incorporated into Carbopol 934P and HPMC K4M liquid gelling system for formation of in-situ gel. The resultant solution was assessed for various parameters, viz., gelling time, gelling capacity, viscosity at pH 5 and pH 6. Ex-vivo permeation of Buspirone hydrochloride through the sheep nasal mucosa showed that 83.49 % w/w drug permeated after 8 h. The SEM and Zeta potential studies showed formation of good and stable vesicles. Thus, the application of niosomes proved the potential for intranasal drug delivery of Buspirone hydrochloride over the conventional gel formulations. Overall intranasal drug of delivery for Buspirone hydrochloride has been successfully developed.
  8. Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, et al.
    Pathol Res Pract, 2023 Nov;251:154895.
    PMID: 37879146 DOI: 10.1016/j.prp.2023.154895
    PURPOSE: Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro.

    METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR.

    RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components.

    CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.

  9. Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, et al.
    Pathol Res Pract, 2023 Sep;249:154736.
    PMID: 37579591 DOI: 10.1016/j.prp.2023.154736
    Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
  10. De Rubis G, Paudel KR, Yeung S, Mohamad S, Sudhakar S, Singh SK, et al.
    Pathol Res Pract, 2024 Apr 09;257:155295.
    PMID: 38603841 DOI: 10.1016/j.prp.2024.155295
    Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-β-glycyrrhetinic acid (18-β-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-β-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1β), mimicking what happens in smokers and COPD patients. Treatment with 18-β-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1β levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-β-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.
  11. Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K
    Panminerva Med, 2018 Sep;60(3):117-131.
    PMID: 29696964 DOI: 10.23736/S0031-0808.18.03455-9
    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
  12. Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM
    Panminerva Med, 2018 Dec;60(4):230-231.
    PMID: 30563304 DOI: 10.23736/S0031-0808.18.03459-6
  13. Singhvi G, Patil S, Girdhar V, Chellappan DK, Gupta G, Dua K
    Panminerva Med, 2018 Dec;60(4):170-173.
    PMID: 29856179 DOI: 10.23736/S0031-0808.18.03467-5
    One of the novel and progressive technology employed in pharmaceutical manufacturing, design of medical device and tissue engineering is three-dimensional (3D) printing. 3D printing technologies provide great advantages in 3D scaffolds fabrication over traditional methods in the control of pore size, porosity, and interconnectivity. Various techniques of 3D-printing include powder bed fusion, fused deposition modeling, binder deposition, inkjet printing, photopolymerization and many others which are still evolving. 3D-printing technique been employed in developing immediate release products, various systems to deliver multiple release modalities etc. 3D printing has opened the door for new generation of customized drug delivery with built-in flexibility for safer and effective therapy. Our mini-review provides a quick snapshot on an overview of 3D printing, various techniques employed, applications and its advancements in pharmaceutical sciences.
  14. Gupta G, Singhvi G, Chellappan DK, Sharma S, Mishra A, Dahiya R, et al.
    Panminerva Med, 2018 Sep;60(3):109-116.
    PMID: 30176701 DOI: 10.23736/S0031-0808.18.03462-6
    Glioblastoma, also known as glioblastoma multiforme, is the most common and worldwide-spread cancer that begins within the brain. Glioblastomas represent 15% of brain tumors. The most common length of survival following diagnosis is 12 to 14 months with less than 3% to 5% of people surviving longer than five years. Without treatment, survival is typically 3 months. Among all receptors, special attention has been focused on the role of peroxisome proliferator-activated receptors (PPARs) in glioblastoma. PPARs are ligand-activated intracellular transcription factors. The PPAR subfamily consists of three subtypes encoded by distinct genes named PPARα, PPARβ/δ, and PPARγ. PPARγ is the most extensively studied subtype of PPAR. There has been interesting preliminary evidence suggesting that diabetic patients receiving PPARγ agonists, a group of anti-diabetics, thiazolidinedione drugs, have an increased median survival for glioblastoma. In this paper, the recent progresses in understanding the potential mechanism of PPARγ in glioblastoma are summarized.
  15. Gupta G, Chellappan DK, de Jesus Andreoli Pinto T, Hansbro PM, Bebawy M, Dua K
    Panminerva Med, 2018 Mar;60(1):17-24.
    PMID: 29164842 DOI: 10.23736/S0031-0808.17.03386-9
    MicroRNAs (miRNAs) are non-coding RNAs of around 20-25 nucleotides in length with highly conserved characteristics. They moderate post-transcriptional silencing by precisely combining with 3' untranslated regions (UTRs) of target mRNAs at a complementary site. miR‑503, an associate of the "canonical" miRNA-16 family, is expressed in numerous types of tumors such as breast cancer, prostate cancer, lung cancer, colorectal cancer, hepatocellular carcinoma, glioblastoma and several others. There is convincing evidence to show that miR‑503 functions as a tumor suppressor gene through its effects on target genes that regulate cell proliferation, migration, and invasion in tumor cells. In this current assessment, we discuss the biology and tumor suppressor role of miR‑503 in different cancers and elaborate on its mechanism of action.
  16. Dua K, Awasthi R, Madan JR, Chellappan DK, Nalluri BN, Gupta G, et al.
    Panminerva Med, 2018 Dec;60(4):238-240.
    PMID: 29480673 DOI: 10.23736/S0031-0808.18.03428-6
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links