METHODS: We conducted a cross-sectional study on 140 hypertensive patients attending outpatient follow-up in two primary care clinics in Sungai Buloh, Malaysia, using a convenient sampling method. SUA levels were measured and divided into four quartiles. Two radiologist specialists performed B mode ultrasonography to assess the thickness of the right and left carotid intima media in all participants.
RESULTS: Participants' mean SUA level was 355.75 ± 0.13. Their mean age was 53.44 (± 9.90), with a blood pressure control of 137.09 ± 13.22/81.89 ± 8.95. Elevated CIMT taken at ≥75th percentile was 0.666 for the left and 0.633 for the right common carotid arteries. By using a hierarchical method of multiple logistic regression, compared with the first quartile of the SUA level as reference group, the odd of elevated CIMT in quartile 4 in the common carotid artery was (OR = 2.00; 95% CI = 0.64-6.27, P = .576) for the right and (OR = 0.62; 95% CI = 0.20-2.00, P = .594) for the left. Waist circumference (P = .001), body mass index (P = .013), triglycerides (P
OBJECTIVE: This study was designed to investigate the therapeutic and anti-metastatic potential of the two newly obtained anti-nNav1.5 antibodies, polyclonal anti-nNav1.5 (pAb-nNav1.5) and monoclonal anti-nNav1.5 (mAb-nNav1.5), on breast cancer invasion and metastasis.
METHODS: MDA-MB-231 and 4T1 cells were used as in vitro models to study the effect of pAb-nNav1.5 (59.2 µg/ml) and mAb-nNav1.5 (10 µg/ml) (24 hours treatment) on cell invasion. 4T1-induced mammary tumours in BALB/c female mice were used as an in vivo model to study the effect of a single dose of intravenous pAb-nNav1.5 (1 mg/ml) and mAb-nNav1.5 (1 mg/ml) on the occurrence of metastasis. Real-time PCR and immunofluorescence staining were conducted to assess the effect of antibody treatment on nNav1.5 mRNA and protein expression, respectively. The animals' body weight, organs, lesions, and tumour mass were also measured and compared.
RESULTS: pAb-nNav1.5 and mAb-nNav1.5 treatments effectively suppressed the invasion of MDA-MB-231 and 4T1 cells in the 3D spheroid invasion assay. Both antibodies significantly reduced nNav1.5 gene and protein expression in these cell lines. Treatment with pAb-nNav1.5 and mAb-nNav1.5 successfully reduced mammary tumour tissue size and mass and prevented lesions in vital organs of the mammary tumour animal model whilst maintaining the animal's healthy weight. mRNA expression of nNav1.5 in mammary tumour tissues was only reduced by mAb-nNav1.5.
CONCLUSION: Overall, this work verifies the uniqueness of targeting nNav1.5 in breast cancer invasion and metastasis prevention, but more importantly, humanised versions of mAb-nNav1.5 may be valuable passive immunotherapeutic agents to target nNav1.5 in breast cancer.
METHODS: Blood specimens were obtained from 92 malignant, 16 benign breast cancer patients and 23 healthy controls. The serum concentrations of sPD-L1 were assessed by enzyme-linked immunosorbent assay (ELISA).
RESULTS: The median serum sPD-L1 concentration of malignant and benign breast cancer patients was significantly elevated compared to the healthy cohorts (12.50 ng/mL vs 13.97 ng/mL vs 8.75 ng/mL, p