Displaying publications 21 - 40 of 176 in total

Abstract:
Sort:
  1. Tasnim Sahrin N, Shiong Khoo K, Wei Lim J, Shamsuddin R, Musa Ardo F, Rawindran H, et al.
    Bioresour Technol, 2022 Nov;364:128088.
    PMID: 36216282 DOI: 10.1016/j.biortech.2022.128088
    The ever-increasing quantity of greenhouse gases in the atmosphere can be attributed to the rapid increase in the world population as well as the expansion of globalization. Hence, achieving carbon neutrality by 2050 stands as a challenging task to accomplish. Global industrialization had necessitated the need to enhance the current production systems to reduce greenhouse gases emission, whilst promoting the capture of carbon dioxide from atmosphere. Hydrogen is often touted as the fuel of future via substituting fossil-based fuels. In this regard, renewable hydrogen happens to be a niche sector of novel technologies in achieving carbon neutrality. Microalgae-based biohydrogen technologies could be a sustainable and economical approach to produce hydrogen from a renewable source, while simultaneously promoting the absorption of carbon dioxide. This review highlights the current perspectives of biohydrogen production as an alternate source of energy. In addition, future challenges associated with biohydrogen production at large-scale application, storage and transportation are included. Key technologies in producing biohydrogen are finally described in building a carbon-neutral future.
  2. Tang SN, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595441
    Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
  3. Tan SS, Abu Hassan MR, Abdullah A, Ooi BP, Korompis T, Merican MI
    J Viral Hepat, 2010 Jun;17(6):410-8.
    PMID: 19758272 DOI: 10.1111/j.1365-2893.2009.01191.x
    Chronic hepatitis C is associated with increased morbidity and mortality in persons undergoing haemodialysis. This single-arm, open-label clinical trial investigated the safety and efficacy of an escalating dosage regimen of pegylated interferon (PEG-IFN) alpha-2b in this patient population. Patients with chronic hepatitis C who were undergoing haemodialysis began treatment with PEG-IFN alpha-2b at a dose of 0.5 microg/kg/week, which was increased every 4 weeks to a maximum of 1 microg/kg/week. Treatment duration was 24 weeks for patients with genotype (G) 2 or 3 infection and 48 weeks for patients with G1 infection. The primary end point was sustained virological response (SVR). Of 46 patients screened, 34 (G1: 70.6%; G3: 29.4%) were treated and 23 (67.6%) completed treatment. Overall, 85.3% of patients experienced early virological response, 52.9% experienced end-of-treatment response, and 50% attained SVR, with a trend toward higher SVR rates in G3 compared with G1 patients (80%vs 37.5%; P = 0.06). Anaemia was the main reason for discontinuation of treatment. Patients with chronic hepatitis C who are undergoing haemodialysis can be successfully treated with an escalating dosage regimen of PEG-IFN alpha-2b monotherapy. G3-infected patients can attain high rates of SVR with only 24 weeks of therapy.
  4. Tan CS, Hassan M, Mohamed Hussein ZA, Ismail I, Ho KL, Ng CL, et al.
    Plant Physiol Biochem, 2018 Feb;123:359-368.
    PMID: 29304481 DOI: 10.1016/j.plaphy.2017.12.033
    Geraniol degradation pathway has long been elucidated in microorganisms through bioconversion studies, yet weakly characterised in plants; enzyme with specific nerol-oxidising activity has not been reported. A novel cDNA encodes nerol dehydrogenase (PmNeDH) was isolated from Persicaria minor. The recombinant PmNeDH (rPmNeDH) is a homodimeric enzyme that belongs to MDR (medium-chain dehydrogenases/reductases) superfamily that catalyses the first oxidative step of geraniol degradation pathway in citral biosynthesis. Kinetic analysis revealed that rPmNeDH has a high specificity for allylic primary alcohols with backbone ≤10 carbons. rPmNeDH has ∼3 fold higher affinity towards nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) than its trans-isomer, geraniol. To our knowledge, this is the first alcohol dehydrogenase with higher preference towards nerol, suggesting that nerol can be effective substrate for citral biosynthesis in P. minor. The rPmNeDH crystal structure (1.54 Å) showed high similarity with enzyme structures from MDR superfamily. Structure guided mutation was conducted to describe the relationships between substrate specificity and residue substitutions in the active site. Kinetics analyses of wild-type rPmNeDH and several active site mutants demonstrated that the substrate specificity of rPmNeDH can be altered by changing any selected active site residues (Asp280, Leu294 and Ala303). Interestingly, the L294F, A303F and A303G mutants were able to revamp the substrate preference towards geraniol. Furthermore, mutant that exhibited a broader substrate range was also obtained. This study demonstrates that P. minor may have evolved to contain enzyme that optimally recognise cis-configured nerol as substrate. rPmNeDH structure provides new insights into the substrate specificity and active site plasticity in MDR superfamily.
  5. Syful Azlie MF, Hassan MR, Junainah S, Rugayah B
    Med J Malaysia, 2015 Feb;70(1):24-30.
    PMID: 26032525 MyJurnal
    A systematic review on the effectiveness and cost-effectiveness of Immunochemical faecal occult IFOBT for CRC screening was carried out. A total of 450 relevant titles were identified, 41 abstracts were screened and 18 articles were included in the results. There was fair level of retrievable evidence to suggest that the sensitivity and specificity of IFOBT varies with the cut-off point of haemoglobin, whereas the diagnostic accuracy performance was influenced by high temperature and haemoglobin stability. A screening programme using IFOBT can be effective for prevention of advanced CRC and reduced mortality. There was also evidence to suggest that IFOBT is cost-effective in comparison with no screening, whereby a two-day faecal collection method was found to be costeffective as a means of screening for CRC. Based on the review, quantitative IFOBT method can be used in Malaysia as a screening test for CRC. The use of fully automated IFOBT assay would be highly desirable.
  6. Syahidah A, Saad CR, Hassan MD, Rukayadi Y, Norazian MH, Kamarudin MS
    Pak J Biol Sci, 2017;20(2):70-81.
    PMID: 29022997 DOI: 10.3923/pjbs.2017.70.81
    BACKGROUND AND OBJECTIVE: The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle .

    METHODOLOGY: Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method.

    RESULTS: The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1.

    CONCLUSION: Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

  7. Suan NAM, Soelar SA, Rani RA, Anuar NA, Aziz KAA, Chan HK, et al.
    Med J Malaysia, 2024 Mar;79(2):222-233.
    PMID: 38553930
    INTRODUCTION: Equitable healthcare delivery is essential and requires resources to be distributed, which include assets and healthcare workers. To date, there is no gold standard for measuring the correct number of physicians to meet healthcare needs. This rapid review aims to explore measurement tools employed to optimise the distribution of hospital physicians, with a focus on ensuring fair resource allocation for equitable healthcare delivery.

    MATERIALS AND METHODS: A literature search was performed across PubMed, EMBASE, Emerald Insight and grey literature sources. The key terms used in the search include 'distribution', 'method', and 'physician', focusing on research articles published in English from 2002 to 2022 that described methods or tools to measure hospital-based physicians' distribution. Relevant articles were selected through a two-level screening process and critically appraised. The primary outcome is the measurement tools used to assess the distribution of hospital-based physicians. Study characteristics, tool advantages and limitations were also extracted. The extracted data were synthesised narratively.

    RESULTS: Out of 7,199 identified articles, 13 met the inclusion criteria. Among the selected articles, 12 were from Asia and one from Africa. The review identified eight measurement tools: Gini coefficients and Lorenz curve, Robin Hood index, Theil index, concentration index, Workload Indicator of Staffing Need method, spatial autocorrelation analysis, mixed integer linear programming model and cohortcomponent model. These tools rely on fundamental data concerning population and physician numbers to generate outputs. Additionally, five studies employed a combination of these tools to gain a comprehensive understanding of physician distribution dynamics.

    CONCLUSION: Measurement tools can be used to assess physician distribution according to population needs. Nevertheless, each tool has its own merits and limitations, underscoring the importance of employing a combination of tools. The choice of measuring tool should be tailored to the specific context and research objectives.

  8. Sreekantan S, Hassan M, Sundera Murthe S, Seeni A
    Polymers (Basel), 2020 Dec 18;12(12).
    PMID: 33352856 DOI: 10.3390/polym12123034
    A sustainable super-hydrophobic coating composed of silica from palm oil fuel ash (POFA) and polydimethylsiloxane (PDMS) was synthesised using isopropanol as a solvent and coated on a glass substrate. FESEM and AFM analyses were conducted to study the surface morphology of the coating. The super-hydrophobicity of the material was validated through goniometry, which showed a water contact angle of 151°. Cytotoxicity studies were conducted by assessing the cell viability and cell morphology of mouse fibroblast cell line (L929) and hamster lung fibroblast cell line (V79) via tetrazolium salt 3-(4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic methods, respectively. The clonogenic assay was performed on cell line V79 and the cell proliferation assay was performed on cell line L929. Both results validate that the toxicity of PDMS: SS coatings is dependent on the concentration of the super-hydrophobic coating. The results also indicate that concentrations above 12.5 mg/mL invariably leads to cell toxicity. These results conclusively support the possible utilisation of the synthesised super-hydrophobic coating for biomedical applications.
  9. Shobugawa Y, Takeuchi T, Hibino A, Hassan MR, Yagami R, Kondo H, et al.
    Epidemiol Infect, 2017 Jan;145(2):272-284.
    PMID: 27682641
    In temperate zones, human respiratory syncytial virus (HRSV) outbreaks typically occur in cold weather, i.e. in late autumn and winter. However, recent outbreaks in Japan have tended to start during summer and autumn. This study examined associations of meteorological conditions with the numbers of HRSV cases reported in summer in Japan. Using data from the HRSV national surveillance system and national meteorological data for summer during the period 2007-2014, we utilized negative binomial logistic regression analysis to identify associations between meteorological conditions and reported cases of HRSV. HRSV cases increased when summer temperatures rose and when relative humidity increased. Consideration of the interaction term temperature × relative humidity enabled us to show synergistic effects of high temperature with HRSV occurrence. In particular, HRSV cases synergistically increased when relative humidity increased while the temperature was ⩾28·2 °C. Seasonal-trend decomposition analysis using the HRSV national surveillance data divided by 11 climate divisions showed that summer HRSV cases occurred in South Japan (Okinawa Island), Kyushu, and Nankai climate divisions, which are located in southwest Japan. Higher temperature and higher relative humidity were necessary conditions for HRSV occurrence in summer in Japan. Paediatricians in temperate zones should be mindful of possible HRSV cases in summer, when suitable conditions are present.
  10. Shakhshir MH, Vanoh D, Hassan M, Zyoud SH
    J Health Popul Nutr, 2023 Sep 23;42(1):101.
    PMID: 37742012 DOI: 10.1186/s41043-023-00445-8
    BACKGROUND: Chronic kidney disease (CKD) is seen as a diverse disease and a primary contributor to global mortality. Malnutrition arises within chronic illness, which involves protein energy depletion and inadequate levels of essential nutrients. These factors increase the likelihood of death and the overall impact of the disease on affected individuals. Consequently, this study aims to utilize bibliometric and visual analysis to assess the current state of research, the latest advances and emerging patterns in the fields of CKD and malnutrition.

    METHODS: Extensive research was conducted using the Scopus database, which is the most authoritative database of research publications and citations, to focus on CKD research between 2003 and 2022, as indicated by title and author keywords. Then, within this vast collection of academic publications, a notable subset of articles was exclusively dedicated to investigating the relationship between CKD and malnutrition. Finally, we performed bibliometric analysis and visualization using VOSviewer 1.6.19 and Microsoft Excel 2013.

    RESULTS: Large global research between 2003 and 2022 resulted in 50,588 documents focused on CKD, as indicated by title and author keywords. In this extensive collection of scientific publications, a staggering portion of 823 articles is devoted exclusively to investigating the link between CKD and malnutrition. Further analysis reveals that this body of work consists of 565 articles (68.65%), 221 reviews (26.85%), and 37 miscellaneous entries (4.50%), which encompass letters and editorials. The USA was found to be the most productive country (n = 173; 21.02%), followed by Italy (n = 83; 10.09%), Sweden (n = 56; 6.80%), Brazil (n = 54; 6.56%) and China (n = 51; 6.20%). The most common terms on the map include those related to the topic of (a) malnutrition in hemodialysis patients and predicting factors; terms associated with the (b) impact of malnutrition on cardiovascular risk and complications in CKD patients; and terms related to the (c) dietary protein intake and malnutrition in CKD.

    CONCLUSIONS: This study is the first of its kind to analyze CKD and malnutrition research using data from Scopus for visualization and network mapping. Recent trends indicate an increasing focus on protein-energy wasting/malnutrition in hemodialysis patients and predicting factors, dietary protein intake, and malnutrition in CKD. These topics have gained significant attention and reflect the latest scientific advances. Intervention studies are crucial to examining diet therapy's impact on patients with stages 1 to 5 CKD. We hope this study will offer researchers, dietitians and nephrologists valuable information.

  11. Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M
    PLoS One, 2016;11(8):e0161707.
    PMID: 27560927 DOI: 10.1371/journal.pone.0161707
    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
  12. Satyaveanthan MV, Suhaimi SA, Ng CL, Muhd-Noor ND, Awang A, Lam KW, et al.
    Plant Physiol Biochem, 2021 Apr;161:143-155.
    PMID: 33588320 DOI: 10.1016/j.plaphy.2021.01.050
    The juvenile hormones (JH) in plants are suggested to act as a form of plant defensive strategy especially against insect herbivory. The oxidation of farnesol to farnesoic acid is a key step in the juvenile hormone biosynthesis pathway. We herein present the purification and characterisation of the recombinant Theobroma cacao farnesol dehydrogenase enzyme that catalyses oxidation of farnesol to farnesal. The recombinant enzyme was purified to apparent homogeneity by affinity chromatography. The purified enzyme was characterised in terms of its deduced amino acid sequences, phylogeny, substrate specificity, kinetic parameters, structural modeling, and docking simulation. The phylogenetic analysis indicated that the T. cacao farnesol dehydrogenase (TcFolDH) showed a close relationship with A. thaliana farnesol dehydrogenase gene. The TcFolDH monomer had a large N-terminal domain which adopted a typical Rossmann-fold, harboring the GxxGxG motif (NADP(H)-binding domain) and a small C-terminal domain. The enzyme was a homotrimer comprised of subunits with molecular masses of 36 kDa. The TcFolDH was highly specific to NADP+ as coenzyme. The substrate specificity studies showed trans, trans-farnesol was the most preferred substrate for the TcFolDH, suggesting that the purified enzyme was a NADP+-dependent farnesol dehydrogenase. The docking of trans, trans-farnesol and NADP+ into the active site of the enzyme showed the important residues, and their interactions involved in the substrate and coenzyme binding of TcFolDH. Considering the extensive involvement of JH in both insects and plants, an in-depth knowledge on the recombinant production of intermediate enzymes of the JH biosynthesis pathway could help provide a potential method for insect control.
  13. Satyaveanthan MV, Ng CL, Awang A, Lam KW, Hassan M
    Insect Mol Biol, 2023 Apr;32(2):143-159.
    PMID: 36454188 DOI: 10.1111/imb.12820
    In Southeast Asia, Conopomorpha cramerella (Snellen) which is commonly known as the cocoa pod borer (CPB) moth has been identified as the most detrimental pest of Theobroma cacao L. Apart from the various side effects on human health and non-target organisms, heavily relying on synthetic pyrethroid insecticides to control CPB infestations also increases the environmental contamination risks. Thus, developing biorational insecticides that minimally affect the non-target organism and environment by targeting the insect growth regulation process is needed to manage the pest population. In insects, juvenile hormones (JH) regulate critical biological events, especially metamorphosis, development and reproduction. Since the physiological roles of JH III vary among different organisms, the biochemical properties, especially substrate specificity and analogue inhibition, may also be different. Therefore, studies on the JH III biosynthetic pathway enzymes in both plants and insects are beneficial to discover more effective analogues. Bioinformatic analysis and biochemical characterization of a NADP+ -dependent farnesol dehydrogenase, an intermediate enzyme of the JH III pathway, from C. cramerella (CcFolDH), were described in this study. In addition, the farnesol analogues that may act as a potent analogue inhibitor for CcFolDH ware determined using in vitro enzymatic study. The phylogenetic analysis indicated that CcFolDH shared a close phylogenetic relationship to the honeybee's short-chain dehydrogenase/reductase. The 27 kDa CcFolDH has an NADP(H) binding domain with a typical Rossmann fold and is likely a homotetrameric protein in the solution. The enzyme had a greater preference for substrate trans, trans-farnesol and coenzyme NADP+ . In terms of analogue inhibitor inhibition, hexahydroxyfarnesyl acetone showed the highest inhibition (the lowest Ki ) compared to other farnesol analogues. Thus, hexahydroxyfarnesyl acetone would serve as the most potent active ingredient for future biorational pesticide management for C. cramerella infestation. Based on the bioinformatic analyses and biochemical characterizations conducted in this research, we proposed that rCcFolDH differs slightly from other reported farnesol dehydrogenases in terms of molecular weight, substrate preference, coenzymes utilization and analogue inhibitors selection.
  14. Sahtout AH, Hassan MD, Shariff M
    Dis Aquat Organ, 2001 Mar 9;44(2):155-9.
    PMID: 11324818
    Fifty black tiger shrimp Penaeus monodon from commercial cultivation ponds in Malaysia were examined by Tdt-mediated dUTP nick-end labeling (TUNEL) fluorescence assay and agarose gel electrophoresis of DNA extracts for evidence of DNA fragmentation as an indicator of apoptosis. From these specimens, 30 were grossly normal and 20 showed gross signs of white spot syndrome virus (WSSV) infection. Of the 30 grossly normal shrimp, 5 specimens were found to be positive for WSSV infection by normal histology and by nested polymerase chain reaction (PCR) analysis. All of the specimens showing gross signs of WSSV infection were positive for WSSV by normal histology, while 5 were positive by nested PCR only (indicating light infections) and 15 were positive by 1-step PCR (indicating heavy infections). Typical histological signs of WSSV infection included nuclear hypertrophy, chromatin condensation and margination. None of the 25 grossly normal shrimp negative for WSSV by 1-step PCR showed any signs of DNA fragmentation by TUNEL assay or agarose gel electrophoresis of DNA extracts. The 10 specimens that gave PCR-positive results for WSSV by nested PCR only (i.e., 5 grossly normal shrimp and 5 grossly positive for WSSV) gave mean counts of 16 +/- 8% TUNEL-positive cells, while the 25 specimens PCR positive by 1-step PCR gave mean counts of 40 +/- 7% TUNEL-positive cells. Thus, the number of TUNEL positive cells present in tissues increased with increasing severity of infection, as determined by gross signs of white spots on the cuticle, the number of intranuclear inclusions in histological sections, and results from single and nested PCR assays. DNA extracts of PCR-positive specimens tested by agarose gel electrophoresis showed indications of DNA fragmentation either as smears or as 200 bp ladders. Given that DNA fragmentation is generally considered to be a hallmark of apoptosis, the results suggested that apoptosis might be implicated in shrimp death caused by WSSV.
  15. Sadiq Butt AR, Abbasi MA, Rehman AU, Siddiqui SZ, Raza H, Hassan M, et al.
    Iran J Pharm Res, 2021;20(2):206-228.
    PMID: 34567157 DOI: 10.22037/ijpr.2020.15521.13145
    Considering the diversified pharmacological importance of thiazole and triazole heterocyclic moieties, a unique series of S-aralkylated bi-heterocyclic hybrids, 7a-l, was synthesized in a convergent manner. The structures of newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, IR, and EI-MS spectral studies. The structure-activity relationship of these compounds was envisaged by analyzing their inhibitory effects against tyrosinase, whereby all these molecules exhibited potent inhibitory potentials relative to the standard used. The Kinetics mechanism was ascertained by Lineweaver-Burk plots, which revealed that 7g inhibited tyrosinase non-competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0057µM. These bi-heterocyclic molecules also disclosed good binding energy values (kcal /mol) when assessed computationally. So, these molecules can be considered promising medicinal scaffolds for the treatment of skin disorders.
  16. Rosfarizan M, Ariff AB, Hassan MA, Karim MI
    Folia Microbiol (Praha), 1998;43(5):459-64.
    PMID: 9867479
    Direct conversion of gelatinized sago starch into kojic acid by Aspergillus flavus strain having amylolytic enzymes was carried out at two different scales of submerged batch fermentation in a 250-mL shake flask and in a 50-L stirred-tank fermentor. For comparison, fermentations were also carried out using glucose and glucose hydrolyzate from enzymic hydrolysis of sago starch as carbon sources. During kojic acid fermentation of starch, starch was first hydrolyzed to glucose by the action of alpha-amylase and glucoamylase during active growth phase. The glucose remaining during the production phase (non-growing phase) was then converted to kojic acid. Kojic acid production (23.5 g/L) using 100 g/L sago starch in a shake flask was comparable to fermentation of glucose (31.5 g/L) and glucose hydrolyzate (27.9 g/L) but in the 50-L fermentor was greatly reduced due to non-optimal aeration conditions. Kojic acid production using glucose was higher in the 50-L fermentor than in the shake flask.
  17. Rinne P, Hassan M, Fernandes C, Han E, Hennessy E, Waldman A, et al.
    Proc Natl Acad Sci U S A, 2018 01 16;115(3):E536-E545.
    PMID: 29284747 DOI: 10.1073/pnas.1715617115
    Attention control (or executive control) is a higher cognitive function involved in response selection and inhibition, through close interactions with the motor system. Here, we tested whether influences of attention control are also seen on lower level motor functions of dexterity and strength-by examining relationships between attention control and motor performance in healthy-aged and hemiparetic-stroke subjects (n = 93 and 167, respectively). Subjects undertook simple-tracking, precision-hold, and maximum force-generation tasks, with each hand. Performance across all tasks correlated strongly with attention control (measured as distractor resistance), independently of factors such as baseline performance, hand use, lesion size, mood, fatigue, or whether distraction was tested during motor or nonmotor cognitive tasks. Critically, asymmetric dissociations occurred in all tasks, in that severe motor impairment coexisted with normal (or impaired) attention control whereas normal motor performance was never associated with impaired attention control (below a task-dependent threshold). This implies that dexterity and force generation require intact attention control. Subsequently, we examined how motor and attention-control performance mapped to lesion location and cerebral functional connectivity. One component of motor performance (common to both arms), as well as attention control, correlated with the anatomical and functional integrity of a cingulo-opercular "salience" network. Independently of this, motor performance difference between arms correlated negatively with the integrity of the primary sensorimotor network and corticospinal tract. These results suggest that the salience network, and its attention-control function, are necessary for virtually all volitional motor acts while its damage contributes significantly to the cardinal motor deficits of stroke.
  18. Razak IA, Latifah RR, Jaafar N, Abu Hassan MI, Ab Murat N
    J Dent Educ, 2008 Mar;72(3):364-9.
    PMID: 18316541
    A survey was conducted to assess competencies of dental graduates of the Faculty of Dentistry, University of Malaya, as perceived by the graduates and their employers, based on the five-year undergraduate curriculum introduced in 1995. All senior dental officers in the Ministry of Health (MOH), representing employers, and all 164 dental graduates of the years 2000, 2001, and 2002 were sent a self-administered questionnaire covering eight areas of competency. The respondents had to rate these areas on a scale of 1 (very poor) to 4 (very good). The responses for each area were then dichotomized into poor (1 and 2) and good (3 and 4). If less than 60 percent of the respondents rated an area as good, then it was categorized as needing attention; 60-69 percent as satisfactory; and 70 percent and above as excellent. One hundred and six graduates (64.6 percent) and twenty-nine employers (96.7 percent) responded; of the graduates, 73.6 percent were working in the MOH and 22.6 percent in private practice. About 57.1 percent of employers reported that at least five graduates have worked under them. Graduates (85.7 percent) and employers (83.3 percent) agreed that graduates have excellent skills in communication. Although all graduates perceived their competency to be excellent in the four areas (treatment planning; community-based skills; management, administrative skills, and personal management; and professional development skills), employers felt that these are the areas that are of concern and needed attention. In conclusion, whilst generally the graduates' level of competency in almost all areas is acceptable or good, there are areas of concern that need to be addressed to further improve the five-year curriculum at the University of Malaya.
  19. Raza H, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Abbas Q, et al.
    Bioorg Chem, 2020 01;94:103445.
    PMID: 31826809 DOI: 10.1016/j.bioorg.2019.103445
    In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.
  20. Raza H, Rehman Sadiq Butt A, Athar Abbasi M, Aziz-Ur-Rehman, Zahra Siddiqui S, Hassan M, et al.
    Chem Biodivers, 2023 Feb;20(2):e202201019.
    PMID: 36597268 DOI: 10.1002/cbdv.202201019
    A multi-step synthesis of novel bi-heterocyclic N-arylated butanamides was consummated through a convergent strategy and the structures of these medicinal scaffolds, 7a-h, were corroborated using spectral techniques. The in vitro analysis of these hybrid molecules revealed their potent tyrosinase inhibition as compared to the standard used. The kinetics mechanism was investigated through Lineweaver-Burk plots which exposed that, 7f, inhibited tyrosinase enzyme non-competitively by forming the enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.025 μM. Their binding conformations were ascertained by in silico computational studies whereby these molecules disclosed good binding energy values (kcal/mol). So, it was anticipated from the current research that these bi-heterocyclic butanamides might be probed as imperative therapeutic agents for melanogenesis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links