Displaying publications 21 - 40 of 48 in total

Abstract:
Sort:
  1. Goh TB, Koh RY, Yam MF, Azhar ME, Mordi MN, Mansor SM
    Food Chem, 2015 Sep 15;183:208-16.
    PMID: 25863630 DOI: 10.1016/j.foodchem.2015.03.044
    Various 6-methoxytetrahydro-β-carboline derivatives, namely BEN (6-methoxy-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole), ANI (6-methoxy-1-(4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole), ACE (6-methoxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole) and VAN (2-methoxy-4-(6-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-l)phenol), were prepared via the Maillard reaction using food flavours and 5-methoxytryptamine in aqueous medium and were investigated for their in vitro antioxidant and cytotoxicity properties. These derivatives were found to exhibit moderate antioxidant properties, based on a combination of DPPH, ABTS and FRAP assays. The results suggested that the Maillard reaction could be used to generate β-carboline antioxidants. It was beneficial that VAN showed the highest antioxidant activity but the least cytotoxic activities on non-tumourous cell lines of NIH/3T3, CCD18-Co and B98-5 using MTT assay. ACE, ANI and BEN showed mild toxicity at effective antioxidative concentrations derived from DPPH and ABTS assays. Furthermore, they are safer compared to 5-fluorouracil, cisplatin and betulinic acid on NIH/3T3, CCD18-Co and B98-5 cells. In conclusion, the antioxidant and cytotoxicity properties of 6-methoxytetrahydro-β-carbolines were demonstrated for the first time.
  2. Sasmita AO, Ling APK, Voon KGL, Koh RY, Wong YP
    Int J Mol Med, 2018 May;41(5):3033-3040.
    PMID: 29436598 DOI: 10.3892/ijmm.2018.3479
    Neurodegeneration is typically preceded by neuroinflammation generated by the nervous system to protect itself from tissue damage, however, excess neuroinflammation may inadvertently cause more harm to the surrounding tissues. Attenuating neuroinflammation with non‑steroidal anti‑inflammatory drugs can inhibit neurodegeneration. However, such treatments induce chronic side effects, including stomach ulcers. Madecassoside, a triterpene derived from Centella asiatica, is considered to be an alternative treatment of inflammation. In the present study, the anti‑neuroinflammatory properties of madecassoside were assessed in BV2 microglia cells, which were pre‑treated with madecassoside at a maximum non‑toxic dose (MNTD) of 9.50 µg/ml and a ½ MNTD of 4.75 µg/ml for 3 h and stimulated with 0.1 µg/ml lipopolysaccharide (LPS). The effect of madecassoside was assessed by determining reactive oxygen species (ROS) levels in all groups. Furthermore, the expression of pro‑ and anti‑neuroinflammatory genes and proteins were analyzed using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that ROS levels in cells treated with the MNTD of madecassoside were significantly reduced compared with cells treated with LPS alone (P<0.05). The expression of pro‑neuroinflammatory genes, including inducible nitric oxide synthase, cyclooxygenase‑2, signal transducer and activator of transcription 1 and nuclear factor‑κB, were significantly downregulated in a dose‑independent manner following treatment with madecassoside. Conversely, the anti‑neuroinflammatory component heme oxygenase 1 was significantly upregulated by 175.22% in the MNTD‑treated group, compared with cells treated with LPS alone (P<0.05). The gene expression profiles of pro‑ and anti‑inflammatory genes were also consistent with the results of western blotting. The results of the present study suggest that madecassoside may be a potent anti‑neuroinflammatory agent. The antioxidative properties of madecassoside, which serve a major role in anti‑neuroinflammation, indicate that this compound may be a functional natural anti‑neuroinflammatory agent, therefore, further in vivo or molecular studies are required.
  3. Chua LK, Lim CL, Ling APK, Chye SM, Koh RY
    Plant Foods Hum Nutr, 2019 Mar;74(1):18-27.
    PMID: 30535971 DOI: 10.1007/s11130-018-0704-z
    Cancer is a preventable and treatable disease, however, the incidence rates are on the rise. Classical treatment modalities for cancer include surgery, radiotherapy and chemotherapy. However, these are associated with detrimental side effects such as nausea and emesis. Therefore, researchers currently vest interest in complementary and alternative medicines for cancer treatment and prevention. Plants such as Syzygium sp. are a common basis of complementary medicines due to its abundance of bioactive phytochemicals. Numerous natural compounds derived from Syzygium sp., such as phenolics, oleanolic acids, and betulinic acids, and dimethyl cardamonins, were reported to have anticancer effects. Many possess the ability to inhibit cell proliferation and induce apoptosis. In this review, we discuss the vast potential Syzygium sp. harbours as a source of anticancer natural compounds due to its abundance, easy acceptability, affordability and safety for regular consumption.
  4. Ang LF, Darwis Y, Koh RY, Gah Leong KV, Yew MY, Por LY, et al.
    Pharmaceutics, 2019 May 01;11(5).
    PMID: 31052413 DOI: 10.3390/pharmaceutics11050205
    Curcuminoids have been used for the management of burns and wound healing in traditional Chinese medicine practices but the wide application of curcuminoids as a healing agent for wounds has always been a known problem due to their poor solubility, bioavailability, colour staining properties, as well as due to their intense photosensitivity and the need for further formulation approaches to maximise their various properties in order for them to considerably contribute towards the wound healing process. In the present study, a complex coacervation microencapsulation was used to encapsulate curcuminoids using gelatin B and chitosan. This study also focused on studying and confirming the potential of curcuminoids in a microencapsulated form as a wound healing agent. The potential of curcuminoids for wound management was evaluated using an in vitro human keratinocyte cell (HaCaT) model and the in vivo heater-inflicted burn wound model, providing evidence that the antioxidant activities of both forms of curcuminoids, encapsulated or not, are higher than those of butylated hydroxyanisole and butylated hydroxytoluene in trolox equivalent antioxidant capacity (TEAC) and (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) studies. However, curcuminoids did not have much impact towards cell migration and proliferation in comparison with the negative control in the in vitro HaCaT study. The micoencapsulation formulation was shown to significantly influence wound healing in terms of increasing the wound contraction rate, hydroxyproline synthesis, and greater epithelialisation, which in turn provides strong justification for the incorporation of the microencapsulated formulation of curcuminoids as a topical treatment for burns and wound healing management as it has the potential to act as a crucial wound healing agent in healthcare settings.
  5. Lim YH, Oo CW, Koh RY, Voon GL, Yew MY, Yam MF, et al.
    Drug Dev Res, 2020 Jul 28.
    PMID: 32720715 DOI: 10.1002/ddr.21715
    In recent years, chalcones and their derivatives have become the focus of global scientists due to increasing evidence reported towards their potency in antitumor and anti-cancer. Here, the chalcones designed and synthesized in our present study were derived from the derivatives of naphthaldehyde and acetophenone. Both these precursors have been reported in demonstrating a certain degree of anticancer property. Also, the substituents on these precursors such as hydroxyl, methoxy, prenyl, and chloro were shown able to enhance the anticancer efficiency. Hence, it is the interest of the current study to investigate the anticancer potential of the hybrid molecules (chalcones) consisting of these precursors with different alkoxy substituents and with or without the fluorine moiety. Two series of chalcone derivatives were designed, synthesized, and characterized using the elemental analysis, IR, 1 H and 13 C NMR spectroscopy, subsequently evaluated for their anti-cancer activity. Interestingly, the results showed that the fluorinated chalcones 11-15 exhibited stronger cytotoxic activity towards the breast cancer cell lines (4T1) compared to non-fluorinated chalcone derivatives. Remarkably, the selectivity index obtained for these fluorinated chalcones derivatives against the breast cancer 4T1 cell line was higher than those exhibited by cisplatin, which is one of the most frequently deployed chemotherapy agents in current medical practice. These findings could provide an insight towards the potential of fluorinated chalcones being developed as an anti-cancer agent with moderate activity towards breast cancer cell and low inhibition of fibroblast cell at a concentration of 100 μM.
  6. Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY
    Metab Brain Dis, 2020 01;35(1):11-30.
    PMID: 31811496 DOI: 10.1007/s11011-019-00516-y
    Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
  7. Chan HH, Leong YQ, Voon SM, Pan ML, Leong CO, Lim CL, et al.
    Rep Biochem Mol Biol, 2021 Jan;9(4):417-425.
    PMID: 33969135 DOI: 10.52547/rbmb.9.4.417
    Background: Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive dysfunction. Previous studies have suggested that amyloid plaques, mainly comprising of amyloid-beta peptides, play a pivotal role in AD pathophysiology. This study focuses on the evaluation of the effects of amyloid precursor protein (APP) overexpression on NF-κB, Rho-GTPase and Bcl-2 mediated pro-apoptotic pathways in neuronal cells.

    Methods: A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells.

    Results: In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKβ and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group.

    Conclusion: APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.

  8. Reena K, Ng KY, Koh RY, Gnanajothy P, Chye SM
    Environ Toxicol, 2017 Jan;32(1):265-277.
    PMID: 26784575 DOI: 10.1002/tox.22233
    para-Phenylenediamine (PPD) has long been used in two-thirds of permanent oxidative hair dye formulations. Epidemiological studies and in vivo studies have shown that hair dye is a suspected carcinogen of bladder cancer. However, the toxicity effects of PPD to human bladder remains elusive. In this study, the effects of PPD and its involvement in the apoptosis pathways in human urothelial cells (UROtsa) was investigated. It was demonstrated that PPD decreased cell viability and increased the number of sub-G1 hypodiploid cells in UROtsa cells. Cell death due to apoptosis was detected using Annexin V binding assay. Further analysis showed PPD generated reactive oxygen species (ROS), induced mitochondrial dysfunction through the loss of mitochondrial membrane potential and increased caspase-3 level in UROtsa cells. Western blot analysis of PPD-treated UROtsa cells showed down-regulation of phosphorylated proteins from NF-κB, mTOR, and Wnt pathways. In conclusion, PPD induced apoptosis via activation of ROS-mediated mitochondrial pathway, and possibly through inhibition of NF-κB, mTOR, and Wnt pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 265-277, 2017.
  9. Chok KC, Koh RY, Ng MG, Ng PY, Chye SM
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443626 DOI: 10.3390/molecules26165038
    Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5'-adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
  10. Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM
    Horm Mol Biol Clin Investig, 2020 Jun 29;41(4).
    PMID: 32598308 DOI: 10.1515/hmbci-2020-0009
    BACKGROUND: Cardiovascular disease (CVD) is one of the major cause of mortality in diabetic patients. Evidence suggests that hyperglycemia in diabetic patients contributes to increased risk of CVD. This study is to investigate the therapeutic effects of melatonin on glucose-treated human umbilical vein endothelial cells (HUVEC) and provide insights on the underlying mechanisms.

    MATERIALS AND METHODS: Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2',7'-dichlorofluorescein diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot.

    RESULTS: Our results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis.

    CONCLUSIONS: In conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.

  11. Teng JS, Ooi YY, Chye SM, Ling APK, Koh RY
    CNS Neurol Disord Drug Targets, 2021;20(9):802-813.
    PMID: 34042040 DOI: 10.2174/1871527320666210526160926
    Parkinson's disease is a common neurodegenerative disease affecting the movement and well-being of most elderly. The manifestations of Parkinson's disease often include resting tremor, stiffness, bradykinesia, and muscular rigidity. The typical hallmark of Parkinson's disease is the destruction of neurons in the substantia nigra and the presence of Lewy bodies in different compartments of the central nervous system. Due to various limitations to the currently available treatments, immunotherapies have emerged to be the new approach to Parkinson's disease treatment. This approach shows some positive outcomes on the efficacy by removing the aggregated species of alpha-synuclein, which is believed to be one of the causes of Parkinson's disease. In this review, an overview of how alpha-synuclein contributes to Parkinson's disease and the effects of a few new immunotherapeutic treatments, including BIIB054 (cinpanemab), MEDI1341, AFFITOPE, and PRX002 (prasinezumab) that are currently under clinical development, will be discussed.
  12. Lai SSM, Ng KY, Koh RY, Chok KC, Chye SM
    Metab Brain Dis, 2021 08;36(6):1087-1100.
    PMID: 33881723 DOI: 10.1007/s11011-021-00737-0
    The endosomal-lysosomal system mediates the process of protein degradation through endocytic pathway. This system consists of early endosomes, late endosomes, recycling endosomes and lysosomes. Each component in the endosomal-lysosomal system plays individual crucial role and they work concordantly to ensure protein degradation can be carried out functionally. Dysregulation in the endosomal-lysosomal system can contribute to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). In AD endosomal-lysosomal abnormalities are the earliest pathological features to note and hence it is important to understand the involvement of endosomal-lysosomal dysfunction in the pathogenesis of AD. In-depth understanding of this dysfunction can allow development of new therapeutic intervention to prevent and treat AD.
  13. Ngai ZN, Chok KC, Ng KY, Koh RY, Chye SM
    Horm Mol Biol Clin Investig, 2022 Dec 01;43(4):485-503.
    PMID: 35728260 DOI: 10.1515/hmbci-2022-0018
    Lung cancer is the second most common cancer and the most lethal cancer worldwide. Melatonin, an indoleamine produced in the pineal gland, shows anticancer effects on a variety of cancers, especially lung cancer. Herein, we clarify the pathophysiology of lung cancer, the association of circadian rhythm with lung, and the relationship between shift work and the incidence of lung cancer. Special focus is placed on the role of melatonin receptors in lung cancer, the relationship between inflammation and lung cancer, control of cell proliferation, apoptosis, autophagy, and immunomodulation in lung cancer by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as a comprehensive reference for the various mechanisms of action of melatonin against lung cancer, as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for lung cancer.
  14. Cheah CH, Ling APK, Wong YP, Koh RY, Hussein S
    Rep Biochem Mol Biol, 2022 Apr;11(1):125-137.
    PMID: 35765526 DOI: 10.52547/rbmb.11.1.125
    BACKGROUND: It is believed that activation of microglia in the central nervous system upon detection of stimulus like lipopolysaccharides provokes neuroinflammation via the production of pro-inflammatory mediators and cytokines. The cytoprotective and anti-inflammatory properties of various folk medicine has been gaining attention as a strategy to combat various disease. This study aimed to assess the anti-neuroinflammatory properties of chloroform extract of in vitro Panax ginseng root culture based on nitric oxide and cytokines production.

    METHODS: The study was initiated with the determination of maximum non-toxic dose (MNTD) of P. ginseng root culture chloroform extract using the MTT assay. The lipopolysaccharides-stimulated BV2 microglia cells were treated with MNTD and ½MNTD of the extract and its anti-neuroinflammatory properties were assessed by measuring the production of nitric oxide (NO) via Griess assay, as well as TNF-α, IL-6 and IL-10 using Quantikine ELISA.

    RESULTS: It was found that the MNTD and ½MNTD of the extract did not play a significant role in the production of pro-inflammatory cytokines such as NO, TNF-α and IL-6. However, the MNTD and ½MNTD of chloroform extract significantly increased the anti-inflammatory IL-10 compared to the untreated cells.

    CONCLUSION: With this, the chloroform extract of P. ginseng root culture potentially exerts anti-neuroinflammatory properties.

  15. Chew ZX, Lim CL, Ng KY, Chye SM, Ling APK, Koh RY
    CNS Neurol Disord Drug Targets, 2023;22(3):329-352.
    PMID: 34970960 DOI: 10.2174/1871527321666211231100255
    Parkinson's disease (PD) is a progressive neurodegenerative disease characterised by reduced dopamine levels in the substantial nigra. This may lead to typical motor features such as bradykinesia, resting tremors and rigid muscles, as well as non-motor symptoms such as neuropsychiatric symptoms, sleep disorders, autonomic dysfunction, and sensory disturbances. Inhibitors of monoamine oxidase B (MAO-B) are used to alleviate symptoms by reducing monoamine oxidase-catalysed degradation of dopamine; hence, preserving functional levels of dopamine. The very first MAO-B inhibitor used therapeutically was selegiline, followed by rasagiline, its indane derivative which has superior efficacy and selectivity. Both inhibitors can be used as monotherapy or in combination with other anti- Parkinson drugs. Safinamide, a reversible MAO-B inhibitor that utilises both dopaminergic and non-dopaminergic mechanisms, was recently approved by the European Medicines Agency (EMA) (2015) and U.S. FDA (2017) as an add-on therapy for patients with mid- or late-stage Parkinson's disease. Furthermore, MAO-B inhibitors were found to be associated with potential neuroprotective and disease modifying effects. However, evidence of their efficacy and role in PD models is scarce and warrants further investigation.
  16. Ng MG, Tan HY, Ng PY, Koh RY, Voon KGL, Chye SM
    Curr Pharm Biotechnol, 2024 Jul 12.
    PMID: 39005118 DOI: 10.2174/0113892010307146240626080746
    BACKGROUND: Cancer is a significant issue worldwide. Generally, commercially available treatments, such as surgery, radiotherapy, and chemotherapy, are associated with undesirable complications. Hence, immunotherapy serves as a crucial alternative to those treatment options.

    OBJECTIVE: This modality is aimed to boost the immune system through the application of engineered antibodies, which can be produced using recombinant DNA technology.

    RESULTS: The discussion of the technologies leads to an introduction of the single-chain variable fragment (scFv). Thereafter, the advantages, disadvantages, and challenges associated with different expression systems, such as mammalian cells, yeast cells, bacterial cells, plant cells, and phage display were discussed comprehensively.

    CONCLUSION: Furthermore, conventional approaches such as hybridoma and modern approaches such as cell-free protein synthesis (CFPS) and simple colony assays are included. In short, this article has compiled evidence relating to each display system and may serve as a reference for those who aim to explore antibody engineering using one of the methods listed in this article.

  17. Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM
    Metab Brain Dis, 2024 Jun;39(5):985-1004.
    PMID: 38842660 DOI: 10.1007/s11011-024-01368-x
    Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
  18. Ng MG, Chan BJL, Koh RY, Ng KY, Chye SM
    PMID: 37326115 DOI: 10.2174/1871527322666230616092054
    Parkinson's disease (PD) is a debilitating neurological disorder characterized by progressively worsening motor dysfunction. Currently, available therapies merely alleviate symptoms, and there are no cures. Consequently, some researchers have now shifted their attention to identifying the modifiable risk factors of PD, with the intention of possibly implementing early interventions to prevent the development of PD. Four primary risk factors for PD are discussed including environmental factors (pesticides and heavy metals), lifestyle (physical activity and dietary intake), drug abuse, and individual comorbidities. Additionally, clinical biomarkers, neuroimaging, biochemical biomarkers, and genetic biomarkers could also help to detect prodromal PD. This review compiled available evidence that illustrates the relationship between modifiable risk factors, biomarkers, and PD. In summary, we raise the distinct possibility of preventing PD via early interventions of the modifiable risk factors and early diagnosis.
  19. Salem HMA, Chok KC, Koh RY, Ng PY, Tiong YL, Chye SM
    Int J Biochem Mol Biol, 2023;14(3):25-31.
    PMID: 37456910
    Diabetic neuropathy (DN) is a condition in which nerve fibers are continually exposed to high glucose-induced free radicals. Recent discoveries demonstrated that melatonin is an indole hormone that contributes to neuroprotection through the modulation of autophagy. Herein, this study aims to examine the neuroprotective effects of melatonin on Schwann cells under high glucose conditions. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was used to measure cell viability. The activation of autophagosomes was determined using acridine orange staining (AO). Western blot assay was used to measure the expression of proteins involved in autophagy and endoplasmic reticulum (ER) stress. Our results demonstrated that melatonin at 1 µM has the highest protective effects on high glucose-induced cell death. Melatonin concentrations of 5 and 10 µM were found to be the most effective in reducing autophagy induced by high glucose. Under high glucose conditions, the protein expressions of LC3, ATF4, ATF6, CHOP, PERK and eIF2-α were up-regulated in Schwann cells. However, melatonin attenuated these changes by downregulating LC3 and the ER stress markers ATF4, ATF6, CHOP, PERK and eIF2-α protein expressions in Schwann cells. In conclusion, melatonin alleviates high glucose-induced autophagy in Schwann cells through PERK-eIF2α-ATF4-CHOP signaling pathways.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links