Displaying publications 21 - 40 of 104 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2021;81(4):312.
    PMID: 34727148 DOI: 10.1140/epjc/s10052-021-08949-5
    This paper presents new sets of parameters ("tunes") for the underlying-event model of the H E R W I G 7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in H E R W I G 7 , and are obtained from a fit to minimum-bias data collected by the CMS experiment at s = 0.9 , 7, and 13 Te . The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the data.
  2. Gupta SM, Behera A, Jain NK, Tripathi A, Rishipathak D, Singh S, et al.
    RSC Adv, 2023 Sep 04;13(38):26344-26356.
    PMID: 37671344 DOI: 10.1039/d3ra03224h
    Leading pathological markers of Alzheimer's disease (AD) include Acetylcholinesterase (AChE), Butyrylcholinesterase (BuChE), Amyloid beta (Aβ) and reactive oxygen species (ROS). Indole derivatives were identified and optimized to improve the potency against AChE, BuChE, Aβ and ROS. The lead molecule IND-30 was found to be selective for AChE (selectivity ratio: 22.92) in comparison to BuChE and showed maximum inhibition potential for human AChE (IC50: 4.16 ± 0.063 μM). IND-30 was found to be safe on the SH-SY5Y cell line until the dose of 30 mM. Further, molecule IND-30 was evaluated for its ability to inhibit AChE-induced Aβ aggregation at 0.5, 10 and 20 μM doses. Approximately, 50% of AChE-induced Aβ aggregation was inhibited by IND-30. Thus, IND-30 was found to be multitargeting for AD.
  3. Khalid A, Ahmad P, Khan A, Muhammad S, Khandaker MU, Alam MM, et al.
    Bioinorg Chem Appl, 2022;2022:9459886.
    PMID: 35873731 DOI: 10.1155/2022/9459886
    Environmental problems with chemical and biological water pollution have become a major concern for society. Providing people with safe and affordable water is a grand challenge of the 21st century. The study investigates the photocatalytic degradation capabilities of hydrothermally prepared pure and Cu-doped ZnO nanoparticles (NPs) for the elimination of dye pollutants. A simple, cost-effective hydrothermal process is employed to synthesize the Cu-doped ZnO NPs. The photocatalytic dye degradation activity of the synthesized Cu-doped ZnO NPs is tested by using methylene blue (MB) dye. In addition, the parameters that affect photodegradation efficiency, such as catalyst concentration, starting potential of hydrogen (pH), and dye concentration, were also assessed. The dye degradation is found to be directly proportional to the irradiation time, as 94% of the MB dye is degraded in 2 hrs. Similarly, the dye degradation shows an inverse relation to the MB dye concentration, as the degradation reduced from 94% to 20% when the MB concentration increases from 5 ppm to 80 ppm. The synthesized cost-effective and environmentally friendly Cu-doped ZnO NPs exhibit improved photocatalytic activity against MB dye and can therefore be employed in wastewater treatment materials.
  4. Sharma A, Hawthorne S, Jha SK, Jha NK, Kumar D, Girgis S, et al.
    Nanomedicine (Lond), 2021 08;16(20):1763-1773.
    PMID: 34296625 DOI: 10.2217/nnm-2021-0066
    Aim: This study was aimed at evaluating the anticancer potential of curcumin-loaded poly(lactic-co-glycolic acid) (PLGA) based nanoparticles (NPs) in MDA-MB231 human breast cancer cells. Methods: Curcumin-loaded PLGA NPs were developed using a modified solvent evaporation technique. Physical characterization was performed on the formulated NPs. Furthermore, in vitro experiments were conducted to study the biological activity of the curcumin-loaded NPs. Results: Curcumin-loaded PLGA NPs demonstrated high encapsulation efficiency and sustained payload release. Moreover, the NPs exhibited a significant reduction in cell viability, cell migration and cell invasion in the MDA-MB231 cells. Conclusion: The study revealed that the formulated curcumin-loaded PLGA NPs possessed significant anti-metastatic properties. The findings showcased the possible potential of curcumin-loaded NPs in the management of debilitating conditions such as cancer. In addition, this study could form the basis for further research and advancements in this area.
  5. Jangra A, Gola P, Singh J, Gond P, Ghosh S, Rachamalla M, et al.
    Neural Regen Res, 2024 Jan;19(1):62-68.
    PMID: 37488845 DOI: 10.4103/1673-5374.374139
    Taurine is a sulfur-containing, semi-essential amino acid that occurs naturally in the body. It alternates between inflammation and oxidative stress-mediated injury in various disease models. As part of its limiting functions, taurine also modulates endoplasmic reticulum stress, Ca2+ homeostasis, and neuronal activity at the molecular level. Taurine effectively protects against a number of neurological disorders, including stroke, epilepsy, cerebral ischemia, memory dysfunction, and spinal cord injury. Although various therapies are available, effective management of these disorders remains a global challenge. Approximately 30 million people are affected worldwide. The design of taurine formation could lead to potential drugs/supplements for the health maintenance and treatment of central nervous system disorders. The general neuroprotective effects of taurine and the various possible underlying mechanisms are discussed in this review. This article is a good resource for understanding the general effects of taurine on various diseases. Given the strong evidence for the neuropharmacological efficacy of taurine in various experimental paradigms, it is concluded that this molecule should be considered and further investigated as a potential candidate for neurotherapeutics, with emphasis on mechanism and clinical studies to determine efficacy.
  6. Malviya R, Raj S, Fuloria S, Subramaniyan V, Sathasivam K, Kumari U, et al.
    Int J Nanomedicine, 2021;16:2533-2553.
    PMID: 33824590 DOI: 10.2147/IJN.S300991
    PURPOSE: The present study was intended to fabricate chitosan (Ch)-tamarind gum polysaccharide (TGP) polyelectrolyte complex stabilized cubic nanoparticles of simvastatin and evaluate their potential against human breast cancer cell lines.

    MATERIALS AND METHODS: The antisolvent precipitation method was used for formulation of nanoparticles. Factorial design (32) was utilized as a tool to analyze the effect of Ch and TGP concentration on particle size and entrapment efficiency of nanoparticles.

    RESULTS: Formulated nanoparticles showed high entrapment efficiency (67.19±0.42-83.36±0.23%) and small size (53.3-383.1 nm). The present investigation involved utilization of two biological membranes (egg and tomato) as biological barriers for drug release. The study revealed that drug release from tomato membranes was retarded (as compared to egg membranes) but the release pattern matched that of egg membranes. All formulations followed the Baker-Lansdale model of drug release irrespective of the two different biological barriers. Stability studies were carried out for 45 days and exhibited less variation in particle size as well as a reduction in entrapment efficiency. Simvastatin loaded PEC stabilized nanoparticles exhibited better control on growth of human breast cancer cell lines than simple simvastatin. An unusual anticancer effect of simvastatin nanoparticles is also supported by several other research studies.

    CONCLUSION: The present study involves first-time synthesis of Ch-TGP polyelectrolyte complex stabilized nanoparticles of simvastatin against MCF-7 cells. It recommends that, in future, theoretical modeling and IVIVC should be carried out for perfect designing of delivery systems.

  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Nov 27;125(22):222001.
    PMID: 33315428 DOI: 10.1103/PhysRevLett.125.222001
    Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10^{-6}  sec, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon center-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production (σ_{tt[over ¯]}) via the selection of charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, σ_{tt[over ¯]}=2.54_{-0.74}^{+0.84} and 2.03_{-0.64}^{+0.71}  μb, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.
  8. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  9. Jha NK, Ojha S, Jha SK, Dureja H, Singh SK, Shukla SD, et al.
    J Mol Neurosci, 2021 Nov;71(11):2192-2209.
    PMID: 33464535 DOI: 10.1007/s12031-020-01767-6
    The coronavirus disease 2019 (COVID-19) pandemic is an issue of global significance that has taken the lives of many across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for its pathogenesis. The pulmonary manifestations of COVID-19 have been well described in the literature. Initially, it was thought to be limited to the respiratory system; however, we now recognize that COVID-19 also affects several other organs, including the nervous system. Two similar human coronaviruses (CoV) that cause severe acute respiratory syndrome (SARS-CoV-1) and Middle East respiratory syndrome (MERS-CoV) are also known to cause disease in the nervous system. The neurological manifestations of SARS-CoV-2 infection are growing rapidly, as evidenced by several reports. There are several mechanisms responsible for such manifestations in the nervous system. For instance, post-infectious immune-mediated processes, direct virus infection of the central nervous system (CNS), and virus-induced hyperinflammatory and hypercoagulable states are commonly involved. Guillain-Barré syndrome (GBS) and its variants, dysfunction of taste and smell, and muscle injury are numerous examples of COVID-19 PNS (peripheral nervous system) disease. Likewise, hemorrhagic and ischemic stroke, encephalitis, meningitis, encephalopathy acute disseminated encephalomyelitis, endothelialitis, and venous sinus thrombosis are some instances of COVID-19 CNS disease. Due to multifactorial and complicated pathogenic mechanisms, COVID-19 poses a large-scale threat to the whole nervous system. A complete understanding of SARS-CoV-2 neurological impairments is still lacking, but our knowledge base is rapidly expanding. Therefore, we anticipate that this comprehensive review will provide valuable insights and facilitate the work of neuroscientists in unfolding different neurological dimensions of COVID-19 and other CoV associated abnormalities.
  10. Gandhi H, Mahant S, Sharma AK, Kumar D, Dua K, Chellappan DK, et al.
    Biofactors, 2024;50(2):232-249.
    PMID: 37702264 DOI: 10.1002/biof.2009
    Piceatannol is a naturally occurring hydroxylated resveratrol analogue that can be found in a variety of fruits and vegetables. It has been documented to have a wide range of beneficial effects, including anti-inflammatory, antioxidant, anti-aging, anti-allergic, antidiabetic, neuroprotective, cardioprotective, and chemopreventive properties. Piceatannol has significantly higher antioxidant activity than resveratrol. Piceatannol has been shown in preclinical studies to have the ability to inhibit or reduce the growth of cancers in various organs such as the brain, breast, lung, colon, cervical, liver, prostate, and skin. However, the bioavailability of Piceatannol is comparatively lower than resveratrol and other stilbenes. Several approaches have been reported in recent years to enhance its bioavailability and biological activity, and clinical trials are required to validate these findings. This review focuses on several aspects of natural stilbene Piceatannol, its chemistry, and its mechanism of action, and its promising therapeutic potential for the prevention and treatment of a wide variety of complex human diseases.
  11. Dua K, Chakravarthi S, Kumar D, Sheshala R, Gupta G
    Int J Pharm Investig, 2013 Oct;3(4):183-7.
    PMID: 24350037 DOI: 10.4103/2230-973X.121287
    In an attempt for better treatment of bacterial infections and burn wounds, semisolid formulations containing norfloxacin (NF) and natural wound healing agent Curcuma longa were prepared. The rationale behind employing combination of NF and Curcuma longa is to obtain synergistic wound healing effect. The prepared formulations were compared with silver sulfadiazine cream 1%, USP.
  12. Gandhamal A, Talbar S, Gajre S, Razak R, Hani AFM, Kumar D
    Comput Biol Med, 2017 Sep 01;88:110-125.
    PMID: 28711767 DOI: 10.1016/j.compbiomed.2017.07.008
    Knee osteoarthritis (OA) progression can be monitored by measuring changes in the subchondral bone structure such as area and shape from MR images as an imaging biomarker. However, measurements of these minute changes are highly dependent on the accurate segmentation of bone tissue from MR images and it is challenging task due to the complex tissue structure and inadequate image contrast/brightness. In this paper, a fully automated method for segmenting subchondral bone from knee MR images is proposed. Here, the contrast of knee MR images is enhanced using a gray-level S-curve transformation followed by automatic seed point detection using a three-dimensional multi-edge overlapping technique. Successively, bone regions are initially extracted using distance-regularized level-set evolution followed by identification and correction of leakages along the bone boundary regions using a boundary displacement technique. The performance of the developed technique is evaluated against ground truths by measuring sensitivity, specificity, dice similarity coefficient (DSC), average surface distance (AvgD) and root mean square surface distance (RMSD). An average sensitivity (91.14%), specificity (99.12%) and DSC (90.28%) with 95% confidence interval (CI) in the range 89.74-92.54%, 98.93-99.31% and 88.68-91.88% respectively is achieved for the femur bone segmentation in 8 datasets. For tibia bone, average sensitivity (90.69%), specificity (99.65%) and DSC (91.35%) with 95% CI in the range 88.59-92.79%, 99.50-99.80% and 88.68-91.88% respectively is achieved. AvgD and RMSD values for femur are 1.43 ± 0.23 (mm) and 2.10 ± 0.35 (mm) respectively while for tibia, the values are 0.95 ± 0.28 (mm) and 1.30 ± 0.42 (mm) respectively that demonstrates acceptable error between proposed method and ground truths. In conclusion, results obtained in this work demonstrate substantially significant performance with consistency and robustness that led the proposed method to be applicable for large scale and longitudinal knee OA studies in clinical settings.
  13. Dey YN, Mahor S, Kumar D, Wanjari M, Gaidhani S, Jadhav A
    J Intercult Ethnopharmacol, 2016;5(1):36-42.
    PMID: 27069720 DOI: 10.5455/jice.20151211063819
    AIM: The tuber of Amorphophallus paeoniifolius (Family-Araceae), commonly called suran or jimikand, has medicinal and food value. It is used in ethnomedicinal practices for correction of gastrointestinal disturbances such as constipation and hemorrhoids. The present study evaluated the effect of A. paeoniifolius tuber on gastrointestinal motor functions.

    MATERIALS AND METHODS: The tuber was collected in December 2011, and its methanolic extract was standardized with the major phenolic compound, betulinic acid, by high-performance liquid chromatography. Rats were orally administered methanolic (APME) or aqueous (APAE) extract (250 and 500 mg/kg, each) of tuber for 7 days. Metoclopramide (MET) (3 mg/kg, orally) was used a reference prokinetic drug. The gastrointestinal parameters viz. number of feces, wet and dry weight and moisture content of feces, gastric emptying, and intestinal transit were evaluated. The isolated tissue preparations were used to check the effect of the extracts on fundus and intestinal contractility. The glucomannan and total phenolic and flavonoid contents were determined spectrophotometrically.

    RESULTS: The pre-treatment of extracts significantly increased the number of feces, wet and dry weight of feces, moisture content, gastric emptying, and intestinal transit. Results were comparable to MET. Further, APME and APAE showed a contraction of fundus and ileum in isolated preparations. APME and APAE were also found to have fair amount of glucomannan, total phenolics, and flavonoids. The results indicate the gastrokinetic potential of the tuber extracts. This may be attributed to the presence of glucomannan and betulinic acid present in the extracts.

    CONCLUSION: In conclusion, the tuber of A. paeoniifolius exhibits gastrokinetic activity and substantiates its traditional use in gastrointestinal motor disturbances.

  14. Kumar D, Rishabh Kumar R, Kujur A, Kumar C, Sunderam S, Kashyap V, et al.
    Malays J Med Sci, 2020 Jul;27(4):108-118.
    PMID: 32863750 DOI: 10.21315/mjms2020.27.4.10
    Background: This study intends to find the growth patterns of selected school children. Globally accepted statistical methods were used to evaluate the data and prepare a growth chart.

    Methods: This cross-sectional study was conducted with school-going children from 16 selected schools of a tribal district in Jharkhand using multistage cluster random sampling. In each selected school, 60 students, 30 boys and 30 girls, were chosen randomly, totaling 960 children (full data was for 935 children only). Growth charts were created using Lambda-Mu-Sigma (LMS) chart maker version 2.5 for height, weight and body mass index (BMI). In the charts, the LMS values with Z scores for each age and respective height and weight for boys and girls were recorded.

    Results: The 468 boys and 467 girls were in the range of 6-14 years of age. Percentile values obtained for the measured heights in centimetres were evaluated and compared with Indian Academy of Pediatrics reference charts for boys and girls for the same age group, and our values were found to be on the lower side. We were able to plot a growth chart of the data set; as the tribal children's ethnicity is different, this growth chart might be used to assess nutritional status.

    Conclusion: We concluded that growth curves for height, weight, and BMI may be used for evaluating children of age 6-14 years in the tribal population. The measures can be a good indicator of their nourishment status and overall growth patterns, which might be indigenous to their ethnicity. A larger sample size of similar tribal populations may give a clearer picture.

  15. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  16. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  17. Singh V, Elamvazuthi I, Jeoti V, George J, Swain A, Kumar D
    Biomed Eng Online, 2016;15:13.
    PMID: 26838596 DOI: 10.1186/s12938-016-0129-6
    Anterior talofibular ligament (ATFL) is considered as the weakest ankle ligament that is most prone to injuries. Ultrasound imaging with its portable, non-invasive and non-ionizing radiation nature is increasingly being used for ATFL diagnosis. However, diagnosis of ATFL injuries requires its segmentation from ultrasound images that is a challenging task due to the existence of homogeneous intensity regions, homogeneous textures and low contrast regions in ultrasound images. To address these issues, this research has developed an efficient ATFL segmentation framework that would contribute to accurate and efficient diagnosis of ATFL injuries for clinical evaluation.
  18. Wong FC, Ong JH, Kumar DT, Chai TT
    Int J Pept Res Ther, 2021;27(3):1837-1847.
    PMID: 33867899 DOI: 10.1007/s10989-021-10214-y
    Peptides are promising antagonists against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). To expedite drug discovery, a computational approach is widely employed for the initial screening of anti-SARS-CoV-2 candidates. This study aimed to investigate the potential of peptides from quinoa seed proteins as multi-target antagonists against SARS-CoV-2 spike glycoprotein receptor-binding domain, main protease, and papain-like protease. Five quinoa proteins were hydrolyzed in silico by papain and subtilisin. Among the 1465 peptides generated, seven could interact stably with the key binding residues and catalytic residues of the viral targets, mainly via hydrogen bonds and hydrophobic interactions. The seven peptides were comparable or superior to previously reported anti-SARS-CoV-2 peptides based on docking scores. Key residues in the seven peptides contributing to binding to viral targets were determined by computational alanine scanning. The seven peptides were predicted in silico to be non-toxic and non-allergenic. The peptides ranged between 546.66 and 3974.87 g/mol in molecular mass, besides exhibiting basic and cationic properties (isoelectric points: 8.26-12.10; net charges: 0.1-4.0). Among the seven peptides, VEDKGMMHQQRMMEKAMNIPRMCGTMQRKCRMS was found to bind the largest number of key residues on the targets. In conclusion, seven putative non-toxic, non-allergenic, multi-target anti-SARS-CoV-2 peptides were identified from quinoa seed proteins. The in vitro and in vivo efficacies of the seven peptides against SARS-CoV-2 deserve attention in future bench-top testing.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10214-y.

  19. Chattaraj B, Nandi A, Das A, Sharma A, Dey YN, Kumar D, et al.
    Front Pharmacol, 2022;13:982419.
    PMID: 36744215 DOI: 10.3389/fphar.2022.982419
    The decoction of the whole plant of Enhydra fluctuans is used ethno medicinally by various tribes for the treatment of kidney stones and urinary problems. However, no scientific studies were carried out to delineate its influence on urinary stone formation and crystallisation. Hence, the present study is proposed to investigate the effect of the aqueous extract of Enhydra fluctuans extract on in vitro crystallisation of calcium oxalate. The present study also evaluated. in silico studies of the metabolites with the target proteins present in the renal calcium oxalate stone matrix. The plant material was subjected to decoction to obtain an aqueous extract. The effect of the extract on calcium oxalate crystallization was evaluated by in vitro nucleation and aggregation assays. Further, the metabolites present in E. fluctuans were mined from the existing literature and their number was found to be 35. The selected 35 metabolites of E. fluctuans were subjected to molecular docking with the 5 proteins which are known to be responsible for calcium oxalate crystal growth. Results of in vitro studies indicated that the extract (50, 100, and 200 μg/mL) and standard drug cystone (1,000 μg/mL) exhibited an inhibitory role in the nucleation process where the percentage inhibitions were 52.69, 43.47, 21.98, and 31.67 μg/mL respectively. The results of molecular docking studies revealed that 2 out of 35 metabolites i.e. Baicalein-7-O-diglucoside and 4',5,6,7-Tetrahydroxy-8-methoxy isoflavone-7-O-beta-D- galactopyranosyl-(1→3)-O-beta-D-xylopyranosyl-(1→4)- O-alpha-L-rhamnopyranoside showed modulatory effects on the four renal stone matrix-associated protein (Human CTP: Phosphoethanolamine Cytidylyltransferase (Protein Data Bank ID: 3ELB), UDP glucose: glycoprotein glucosyltransferase 2 (Gene: UGGT2) (AlphaFold) and RIMS-binding protein 3A (Gene: RIMBP3) (AlphaFold), and Ras GTPase activating-like protein (PDB: 3FAY) based on their docking scores which indicates that they may inhibit the crystallization process. Findings from this study show that Enhydra fluctuans may be effective in the prevention of the crystallization of calcium oxalate. However, further, in vivo studies as well as molecular studies are needed to be conducted to confirm and strengthen its anti-urolithiatic activity and to elucidate the possible mechanism of action involved therein.
  20. Kumar P, Pandey R, Sharma P, Dhar MS, A V, Uppili B, et al.
    Wellcome Open Res, 2020;5:184.
    PMID: 32995557 DOI: 10.12688/wellcomeopenres.16119.1
    Background: India first detected SARS-CoV-2, causal agent of COVID-19 in late January 2020, imported from Wuhan, China. From March 2020 onwards, the importation of cases from countries in the rest of the world followed by seeding of local transmission triggered further outbreaks in India. Methods: We used ARTIC protocol-based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT sequencing from Oxford Nanopore Technology to understand how introduction and local transmission occurred. Results: The analyses revealed multiple introductions of SARS-CoV-2 genomes, including the A2a cluster from Europe and the USA, A3 cluster from Middle East and A4 cluster (haplotype redefined) from Southeast Asia (Indonesia, Thailand and Malaysia) and Central Asia (Kyrgyzstan). The local transmission and persistence of genomes A4, A2a and A3 was also observed in the studied locations. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, and are here proposed as A4-clade based on its divergence within the A cluster. Conclusions: The viral haplotypes may link their persistence to geo-climatic conditions and host response. Multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links