Displaying publications 21 - 40 of 63 in total

Abstract:
Sort:
  1. Naher UA, Othman R, Latif MA, Panhwar QA, Amaddin PA, Shamsuddin ZH
    Int J Mol Sci, 2013 Aug 30;14(9):17812-29.
    PMID: 23999588 DOI: 10.3390/ijms140917812
    This study was conducted to evaluate selected biomolecular characteristics of rice root-associated diazotrophs isolated from the Tanjong Karang rice irrigation project area of Malaysia. Soil and rice plant samples were collected from seven soil series belonging to order Inceptisol (USDA soil taxonomy). A total of 38 diazotrophs were isolated using a nitrogen-free medium. The biochemical properties of the isolated bacteria, such as nitrogenase activity, indoleacetic acid (IAA) production and sugar utilization, were measured. According to a cluster analysis of Jaccard's similarity coefficients, the genetic similarities among the isolated diazotrophs ranged from 10% to 100%. A dendogram constructed using the unweighted pair-group method with arithmetic mean (UPGMA) showed that the isolated diazotrophs clustered into 12 groups. The genomic DNA rep-PCR data were subjected to a principal component analysis, and the first four principal components (PC) accounted for 52.46% of the total variation among the 38 diazotrophs. The 10 diazotrophs that tested highly positive in the acetylene reduction assay (ARA) were identified as Bacillus spp. (9 diazotrophs) and Burkholderia sp. (Sb16) using the partial 16S rRNA gene sequence analysis. In the analysis of the biochemical characteristics, three principal components were accounted for approximately 85% of the total variation among the identified diazotrophs. The examination of root colonization using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) proved that two of the isolated diazotrophs (Sb16 and Sb26) were able to colonize the surface and interior of rice roots and fixed 22%-24% of the total tissue nitrogen from the atmosphere. In general, the tropical soils (Inceptisols) of the Tanjong Karang rice irrigation project area in Malaysia harbor a diverse group of diazotrophs that exhibit a large variation of biomolecular characteristics.
  2. Mazid MS, Rafii MY, Hanafi MM, Rahim HA, Latif MA
    Physiol Plant, 2013 Nov;149(3):432-47.
    PMID: 23521023 DOI: 10.1111/ppl.12054
    A field experiment was carried out in order to evaluate genetic diversity of 41 rice genotypes using physiological traits and molecular markers. All the genotypes unveiled variations for crop growth rate (CGR), relative growth rate (RGR), net assimilation rate (NAR), yield per hill (Yhill(-1)), total dry matter (TDM), harvest index (HI), photosynthetic rate (PR), leaf area index (LAI), chlorophyll-a and chlorophyll-b at maximum tillering stage. The CGR values varied from 0.23 to 0.76 gm cm(-2) day(-1). The Yhill(-1) ranged from 15.91 to 92.26 g, while TDM value was in the range of 7.49 to 20.45 g hill(-1). PR was found to vary from 9.40 to 22.34 µmol m(-2) s(-1). PR expressed positive relation with Yhill(-1). Significant positive relation was found between CGR and TDM (r = 0.61**), NAR and CGR (r = 0.62**) and between TDM and NAR (r = 0.31**). High heritability was found in RGR and Yhill(-1). Cluster analysis based on the traits grouped 41 rice genotypes into seven clusters. A total of 310 polymorphic loci were detected across the 20 inter-simple sequence repeats (ISSR) markers. The UPGMA dendrogram grouped 41 rice genotypes into 11 clusters including several sub-clusters. The Mantel test revealed positive correlation between quantitative traits and molecular markers (r = 0.41). On the basis of quantitative traits and molecular marker analyses parental genotypes, IRBB54 with MR84, IRBB60 with MR84, Purbachi with MR263, IRBB65 with BR29, IRBB65 with Pulut Siding and MRQ74 with Purbachi could be hybridized for future breeding program.
  3. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KhN, et al.
    Int J Mol Sci, 2013;14(11):22499-528.
    PMID: 24240810 DOI: 10.3390/ijms141122499
    Over the last few decades, the use of molecular markers has played an increasing role in rice breeding and genetics. Of the different types of molecular markers, microsatellites have been utilized most extensively, because they can be readily amplified by PCR and the large amount of allelic variation at each locus. Microsatellites are also known as simple sequence repeats (SSR), and they are typically composed of 1-6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs. The evolution of new biotypes of pests and diseases as well as the pressures of climate change pose serious challenges to rice breeders, who would like to increase rice production by introducing resistance to multiple biotic and abiotic stresses. Recent advances in rice genomics have now made it possible to identify and map a number of genes through linkage to existing DNA markers. Among the more noteworthy examples of genes that have been tightly linked to molecular markers in rice are those that confer resistance or tolerance to blast. Therefore, in combination with conventional breeding approaches, marker-assisted selection (MAS) can be used to monitor the presence or lack of these genes in breeding populations. For example, marker-assisted backcross breeding has been used to integrate important genes with significant biological effects into a number of commonly grown rice varieties. The use of cost-effective, finely mapped microsatellite markers and MAS strategies should provide opportunities for breeders to develop high-yield, blast resistance rice cultivars. The aim of this review is to summarize the current knowledge concerning the linkage of microsatellite markers to rice blast resistance genes, as well as to explore the use of MAS in rice breeding programs aimed at improving blast resistance in this species. We also discuss the various advantages, disadvantages and uses of microsatellite markers relative to other molecular marker types.
  4. Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, et al.
    Biomed Res Int, 2013;2013:963525.
    PMID: 23484164 DOI: 10.1155/2013/963525
    Submergence or flood is one of the major harmful abiotic stresses in the low-lying countries and crop losses due to waterlogging are considerably high. Plant breeding techniques, conventional or genetic engineering, might be an effective and economic way of developing crops to grow successfully in waterlogged condition. Marker assisted selection (MAS) is a new and more effective approach which can identify genomic regions of crops under stress, which could not be done previously. The discovery of comprehensive molecular linkage maps enables us to do the pyramiding of desirable traits to improve in submergence tolerance through MAS. However, because of genetic and environmental interaction, too many genes encoding a trait, and using undesirable populations the mapping of QTL was hampered to ensure proper growth and yield under waterlogged conditions Steady advances in the field of genomics and proteomics over the years will be helpful to increase the breeding programs which will help to accomplish a significant progress in the field crop variety development and also improvement in near future. Waterlogging response of soybean and major cereal crops, as rice, wheat, barley, and maize and discovery of QTL related with tolerance of waterlogging, development of resistant variety, and, in addition, future prospects have also been discussed.
  5. Khan MA, Sen PP, Bhuiyan R, Kabir E, Chowdhury AK, Fukuta Y, et al.
    C. R. Biol., 2014 May;337(5):318-24.
    PMID: 24841958 DOI: 10.1016/j.crvi.2014.02.007
    Experiments were conducted to identify blast-resistant fragrant genotypes for the development of a durable blast-resistant rice variety during years 2012-2013. The results indicate that out of 140 test materials including 114 fragrant germplasms, 25 differential varieties (DVs) harbouring 23 blast-resistant genes, only 16 fragrant rice germplasms showed comparatively better performance against a virulent isolate of blast disease. The reaction pattern of single-spore isolate of Magnaporthe oryzae to differential varieties showed that Pish, Pi9, Pita-2 and Pita are the effective blast-resistant genes against the tested blast isolates in Bangladesh. The DNA markers profiles of selected 16 rice germplasms indicated that genotype Chinigura contained Pish, Pi9 and Pita genes; on the other hand, both BRRI dhan50 and Bawaibhog contained Pish and Pita genes in their genetic background. Genotypes Jirakatari, BR5, and Gopalbhog possessed Pish gene, while Uknimodhu, Deshikatari, Radhunipagol, Kalijira (3), Chinikanai each contained the Pita gene only. There are some materials that did not contain any target gene(s) in their genetic background, but proved resistant in pathogenicity tests. This information provided valuable genetic information for breeders to develop durable blast-resistant fragrant or aromatic rice varieties in Bangladesh.
  6. Usman MG, Rafii MY, Ismail MR, Malek MA, Latif MA
    Molecules, 2014 May 21;19(5):6474-88.
    PMID: 24853712 DOI: 10.3390/molecules19056474
    Research was carried out to estimate the levels of capsaicin and dihydrocapsaicin that may be found in some heat tolerant chili pepper genotypes and to determine the degree of pungency as well as percentage capsaicin content of each of the analyzed peppers. A sensitive, precise, and specific ultra fast liquid chromatographic (UFLC) system was used for the separation, identification and quantitation of the capsaicinoids and the extraction solvent was acetonitrile. The method validation parameters, including linearity, precision, accuracy and recovery, yielded good results. Thus, the limit of detection was 0.045 µg/kg and 0.151 µg/kg for capsaicin and dihydrocapsaicin, respectively, whereas the limit of quantitation was 0.11 µg/kg and 0.368 µg/kg for capsaicin and dihydrocapsaicin. The calibration graph was linear from 0.05 to 0.50 µg/g for UFLC analysis. The inter- and intra-day precisions (relative standard deviation) were <5.0% for capsaicin and <9.9% for dihydrocapsaicin while the average recoveries obtained were quantitative (89.4%-90.1% for capsaicin, 92.4%-95.2% for dihydrocapsaicin), indicating good accuracy of the UFLC method. AVPP0705, AVPP0506, AVPP0104, AVPP0002, C05573 and AVPP0805 showed the highest concentration of capsaicin (12,776, 5,828, 4,393, 4,760, 3,764 and 4,120 µg/kg) and the highest pungency level, whereas AVPP9703, AVPP0512, AVPP0307, AVPP0803 and AVPP0102 recorded no detection of capsaicin and hence were non-pungent. All chili peppers studied except AVPP9703, AVPP0512, AVPP0307, AVPP0803 and AVPP0102 could serve as potential sources of capsaicin. On the other hand, only genotypes AVPP0506, AVPP0104, AVPP0002, C05573 and AVPP0805 gave a % capsaicin content that falls within the pungency limit that could make them recommendable as potential sources of capsaicin for the pharmaceutical industry.
  7. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Kamal Uddin M, Alam MZ, et al.
    Mol Biol Rep, 2014 Nov;41(11):7395-411.
    PMID: 25085039 DOI: 10.1007/s11033-014-3628-1
    Common purslane (Portulaca oleracea), also known as pigweed, fatweed, pusle, and little hogweed, is an annual succulent herb in the family Portulacaceae that is found in most corners of the globe. From the ancient ages purslane has been treated as a major weed of vegetables as well as other crops. However, worldwide researchers and nutritionists have studied this plant as a potential vegetable crop for humans as well as animals. Purslane is a nutritious vegetable with high antioxidant properties and recently has been recognized as the richest source of α-linolenic acid, essential omega-3 and 6 fatty acids, ascorbic acid, glutathione, α-tocopherol and β-carotene. The lack of vegetable sources of ω-3 fatty acids has resulted in a growing level of attention to introduce purslane as a new cultivated vegetable. In the rapid-revolutionizing worldwide atmosphere, the ability to produce improved planting material appropriate to diverse and varying rising conditions is a supreme precedence. Though various published reports on morphological, physiological, nutritional and medicinal aspects of purslane are available, research on the genetic improvement of this promising vegetable crop are scant. Now it is necessary to conduct research for the genetic improvement of this plant. Genetic improvement of purslane is also a real scientific challenge. Scientific modernization of conventional breeding with the advent of advance biotechnological and molecular approaches such as tissue culture, protoplast fusion, genetic transformation, somatic hybridization, marker-assisted selection, qualitative trait locus mapping, genomics, informatics and various statistical representation have opened up new opportunities of revising the relationship between genetic diversity, agronomic performance and response to breeding for varietal improvement. This review is an attempt to amalgamate the assorted scientific information on purslane propagation, cultivation, varietal improvement, nutrient analyses, medicinal uses and to describe prospective research especially for genetic improvement of this crop.
  8. Panhwar QA, Naher UA, Shamshuddin J, Jusop S, Othman R, Latif MA, et al.
    PLoS One, 2014;9(10):e97241.
    PMID: 25285745 DOI: 10.1371/journal.pone.0097241
    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.
  9. Adnan SM, Uddin MM, Alam MJ, Islam MS, Kashem MA, Rafii MY, et al.
    ScientificWorldJournal, 2014;2014:709614.
    PMID: 25140344 DOI: 10.1155/2014/709614
    An experiment was conducted in Field Laboratory, Department of Entomology at Bangladesh Agricultural University, Mymensingh, during 2013 to manage the mango hopper, Idioscopus clypealis L, using three chemical insecticides, Imidacloprid (0.3%), Endosulfan (0.5%), and Cypermethrin (0.4%), and natural Neem oil (3%) with three replications of each. All the treatments were significantly effective in managing mango hopper in comparison to the control. Imidacloprid showed the highest efficacy in percentage of reduction of hopper population (92.50 ± 9.02) at 72 hours after treatment in case of 2nd spray. It also showed the highest overall percentage of reduction (88.59 ± 8.64) of hopper population and less toxicity to natural enemies including green ant, spider, and lacewing of mango hopper. In case of biopesticide, azadirachtin based Neem oil was found effective against mango hopper as 48.35, 60.15, and 56.54% reduction after 24, 72, and 168 hours of spraying, respectively, which was comparable with Cypermethrin as there was no statistically significant difference after 168 hours of spray. Natural enemies were also higher after 1st and 2nd spray in case of Neem oil.
  10. Rashid MH, Hossain MA, Kashem MA, Kumar S, Rafii MY, Latif MA
    ScientificWorldJournal, 2014;2014:639246.
    PMID: 24723819 DOI: 10.1155/2014/639246
    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1-9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.
  11. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Selamat A, Rafii MY, et al.
    Biomed Res Int, 2014;2014:208584.
    PMID: 24579076 DOI: 10.1155/2014/208584
    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.
  12. Noh A, Rafii MY, Mohd Din A, Kushairi A, Norziha A, Rajanaidu N, et al.
    Genet. Mol. Res., 2014;13(2):2426-37.
    PMID: 24781997 DOI: 10.4238/2014.April.3.15
    Twelve introgressed oil palm (Elaeis guineensis) progenies of Nigerian dura x Deli dura were evaluated for bunch yield, yield attributes, bunch quality components and vegetative characters at the Malaysian Palm Oil Board Research Station, in Keratong, Pahang, Malaysia. Analysis of variance revealed significant to highly significant genotypic differences, indicating sufficient genetic variability among the progenies for bunch yield and its attributes, vegetative characters and bunch quality components, except fruit to bunch ratio. Fresh fruit bunch yield ranged from 167 kg·palm(-1)·year(-1) in PK1330 to 212 kg·palm(-1)·year(-1) in PK1351, with a mean yield of 192 kg·palm(-1)·year(-1). Among the progeny, PK1313 had the highest oil to bunch ratio (19.36%), due to its high mesocarp to fruit ratio, fruit to bunch ratio and low shell to fruit ratio. Among the progenies, PK1313 produced the highest oil yield of 31.4 kg·palm(-1)·year(-1), due to a high mesocarp to fruit ratio (61.2%) and a low shell to fruit ratio (30.7%), coupled with high fruit to bunch ratio (65.6%). PK1330 was found promising for selection, as it had desirable vegetative characters, including smaller petiole cross section (27.15 cm2), short rachis length (4.83 m), short palm height (1.85 m), and the lowest leaf number (164.6), as these vegetative characters are prerequisites for selecting palms for high density planting and high yield per hectare. The genetic variability among the progenies was found to be high, indicating ample scope for further breeding, followed by selection.
  13. Puteh AB, Mondal MM, Ismail MR, Latif MA
    Biomed Res Int, 2014;2014:302179.
    PMID: 24895563 DOI: 10.1155/2014/302179
    The experiment was conducted to investigate potential causes of grain sterility in widely cultivated rice variety in Malaysia, MR219 and its two mutant lines (RM311 and RM109) by examining the source-sink relations. RM311 produced increased dry matter yield both at heading and maturity and also showed higher grain yield with greater proportion of grain sterility than the other two genotypes (RM109 and MR219) resulting in the lowest harvest index (49.68%). In contrast, harvest index was greater in RM109 (53.34%) and MR219 (52.76%) with less grain sterility percentage than MR311 indicating that dry matter partitioning to economic yield was better in RM109 and MR219 than in MR311. Results indicated that dry matter allocation per spikelet from heading to maturity was important for reducing grain sterility in rice. The greater above-ground crop dry matter per spikelet was observed in RM109 and MR219 as compared to high dry matter producing genotype; RM311 implies that poor grain filling may not have resulted from dry matter production or source limitation. These findings suggest that grain sterility or poor grain filling in rice is the result of poor translocation and partitioning of assimilates into grains (sink) rather than of limited biomass production or source limitation.
  14. Golestan Hashemi FS, Rafii MY, Ismail MR, Mohamed MT, Rahim HA, Latif MA, et al.
    Gene, 2015 Jan 25;555(2):101-7.
    PMID: 25445269 DOI: 10.1016/j.gene.2014.10.048
    MRQ74, a popular aromatic Malaysian landrace, allows for charging considerably higher prices than non-aromatic landraces. Thus, breeding this profitable trait has become a priority for Malaysian rice breeding. Despite many studies on aroma genetics, ambiguities considering its genetic basis remain. It has been observed that identifying quantitative trait loci (QTLs) based on anchor markers, particularly candidate genes controlling a trait of interest, can increase the power of QTL detection. Hence, this study aimed to locate QTLs that influence natural variations in rice scent using microsatellites and candidate gene-based sequence polymorphisms. For this purpose, an F2 mapping population including 189 individual plants was developed by MRQ74 crosses with 'MR84', a non-scented Malaysian accession. Additionally, qualitative and quantitative approaches were applied to obtain a phenotype data framework. Consequently, we identified two QTLs on chromosomes 4 and 8. These QTLs explained from 3.2% to 39.3% of the total fragrance phenotypic variance. In addition, we could resolve linkage group 8 by adding six gene-based primers in the interval harboring the most robust QTL. Hence, we could locate a putative fgr allele in the QTL found on chromosome 8 in the interval RM223-SCU015RM (1.63cM). The identified QTLs represent an important step toward recognition of the rice flavor genetic control mechanism. In addition, this identification will likely accelerate the progress of the use of molecular markers for gene isolation, gene-based cloning, and marker-assisted selection breeding programs aimed at improving rice cultivars.
  15. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    C. R. Biol., 2015 Feb;338(2):83-94.
    PMID: 25553855 DOI: 10.1016/j.crvi.2014.11.003
    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast.
  16. Azizi P, Rafii MY, Maziah M, Abdullah SN, Hanafi MM, Latif MA, et al.
    Mech. Dev., 2015 Feb;135:1-15.
    PMID: 25447356 DOI: 10.1016/j.mod.2014.11.001
    Auxin and cytokinin regulate different critical processes involved in plant growth and environmental feedbacks. These plant hormones act either synergistically or antagonistically to control the organisation, formation and maintenance of meristem. Meristem cells can be divided to generate new tissues and organs at the locations of plant postembryonic development. The aboveground plant organs are created by the shoot apical meristem (SAM). It has been proposed that the phytohormone, cytokinin, plays a positive role in the shoot meristem function, promotes cell expansion and promotes an increasing size of the meristem in Arabidopsis, whereas it has the reverse effects in the root apical meristem (RAM). Over the last few decades, it has been believed that the apically derived auxin suppresses the shoot branching by inactivating the axillary buds. However, it has recently become clear that the mechanism of action of auxinis indirect and multifaceted. In higher plants, the regulatory mechanisms of the SAM formation and organ separation are mostly unknown. This study reviews the effects and functions of cytokinin and auxin at the shoot apical meristem. This study also highlights the merger of the transcription factor activity with the actions of cytokinin/auxin and their complex interactions with the shoot meristem in rice.
  17. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, et al.
    Biotechnology, biotechnological equipment, 2015 Mar 04;29(2):237-254.
    PMID: 26019637
    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.
  18. Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA
    C. R. Biol., 2015 May;338(5):321-34.
    PMID: 25843222 DOI: 10.1016/j.crvi.2015.03.001
    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.
  19. Golestan Hashemi FS, Rafii MY, Razi Ismail M, Mohamed MT, Rahim HA, Latif MA, et al.
    Plant Biol (Stuttg), 2015 Sep;17(5):953-61.
    PMID: 25865409 DOI: 10.1111/plb.12335
    Developing fragrant rice through marker-assisted/aided selection (MAS) is an economical and profitable approach worldwide for the enrichment of an elite genetic background with a pleasant aroma. The PCR-based DNA markers that distinguish the alleles of major fragrance genes in rice have been synthesised to develop rice scent biofortification through MAS. Thus, the present study examined the aroma biofortification potential of these co-dominant markers in a germplasm panel of 189 F2 progeny developed from crosses between a non-aromatic variety (MR84) and a highly aromatic but low-yielding variety (MRQ74) to determine the most influential diagnostic markers for fragrance biofortification. The SSRs and functional DNA markers RM5633 (on chromosome 4), RM515, RM223, L06, NKSbad2, FMbadh2-E7, BADEX7-5, Aro7 and SCU015RM (on chromosome 8) were highly associated with the 2AP (2-acetyl-1-pyrroline) content across the population. The alleles traced via these markers were also in high linkage disequilibrium (R(2) > 0.70) and explained approximately 12.1, 27.05, 27.05, 27.05, 25.42, 25.42, 20.53, 20.43 and 20.18% of the total phenotypic variation observed for these biomarkers, respectively. F2 plants harbouring the favourable alleles of these effective markers produced higher levels of fragrance. Hence, these rice plants can be used as donor parents to increase the development of fragrance-biofortified tropical rice varieties adapted to growing conditions and consumer preferences, thus contributing to the global rice market.
  20. Latif MA, Zaki MZ, Leng TM, Rahman NH, Arshad SA, Hamid A
    J Ethnopharmacol, 2015 Dec 24;176:258-67.
    PMID: 26519202 DOI: 10.1016/j.jep.2015.10.036
    A. denudata is traditionally used to treat various skin disorders, including wounds. It is widely used by the traditional healers as an effective wound treatment.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links