Displaying publications 21 - 40 of 95 in total

Abstract:
Sort:
  1. Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, et al.
    Environ Res, 2023 May 01;224:115543.
    PMID: 36822540 DOI: 10.1016/j.envres.2023.115543
    Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
  2. Li C, Gao P, Yu R, Zhong H, Wu M, Lam SS, et al.
    Environ Sci Ecotechnol, 2023 Apr;14:100259.
    PMID: 36949895 DOI: 10.1016/j.ese.2023.100259
  3. Li C, Zhong H, Meng L, Wu M, Ning W, Lam SS, et al.
    Environ Sci Ecotechnol, 2024 Jul;20:100369.
    PMID: 38318213 DOI: 10.1016/j.ese.2023.100369
    •Dumping of Fukushima's radioactive wastewater raises marine food web concern.•Tritium seems to be the most problematic compound.•Long-lived radioisotopes Biomagnify up to 50,000 folds in marine fish species.•This threatens fragile deep-sea ecosystems requiring immediate action.•Empowered Routine monitoring is crucial to maintain planetary health.
  4. Dang F, Li C, Nunes LM, Tang R, Wang J, Dong S, et al.
    Environ Int, 2023 Jun;176:107990.
    PMID: 37247467 DOI: 10.1016/j.envint.2023.107990
    Food security and sustainable development of agriculture has been a key challenge for decades. To support this, nanotechnology in the agricultural sectors increases productivity and food security, while leaving complex environmental negative impacts including pollution of the human food chains by nanoparticles. Here we model the effects of silver nanoparticles (Ag-NPs) in a food chain consisting of soil-grown lettuce Lactuca sativa and snail Achatina fulica. Soil-grown lettuce were exposed to sulfurized Ag-NPs via root or metallic Ag-NPs via leaves before fed to snails. We discover an important biomagnification of silver in snails sourced from plant root uptake, with trophic transfer factors of 2.0-5.9 in soft tissues. NPs shifts from original size (55-68 nm) toward much smaller size (17-26 nm) in snails. Trophic transfer of Ag-NPs reprograms the global metabolic profile by down-regulating or up-regulating metabolites for up to 0.25- or 4.20- fold, respectively, relative to the control. These metabolites control osmoregulation, phospholipid, energy, and amino acid metabolism in snails, reflecting molecular pathways of biomagnification and pontential adverse biological effects on lower trophic levels. Consumption of these Ag-NP contaminated snails causes non-carcinogenic effects on human health. Global public health risks decrease by 72% under foliar Ag-NP application in agriculture or through a reduction in the consumption of snails sourced from root application. The latter strategy is at the expense of domestic economic losses in food security of $177.3 and $58.3 million annually for countries such as Nigeria and Cameroon. Foliar Ag-NP application in nano-agriculture has lower hazard quotient risks on public health than root application to ensure global food safety, as brought forward by the United Nations Sustainable Development Goals.
  5. Li C, Zhong H, Liu G, Liu D, Wu M, Lam SS, et al.
    Eco Environ Health, 2023 Dec;2(4):243-245.
    PMID: 38435354 DOI: 10.1016/j.eehl.2023.05.001
    Image 1.
  6. Chun T'ing L, Moorthy K, Gunasaygaran N, Sek Li C, Omapathi D, Jia Yi H, et al.
    J Air Waste Manag Assoc, 2021 07;71(7):890-905.
    PMID: 33689567 DOI: 10.1080/10962247.2021.1900001
    Malaysia, also known as a food haven, is currently facing an excessive food waste problem which poses a threat to the environment. The objective of this research is to study the factors that affect the behavioral intention of Malaysians to reduce food waste. This study employs the Theory of Planned Behavior (TPB) and the Norm Activation Model (NAM) to better understand the behavioral intention of Malaysians toward reducing food waste. A cross-sectional study was conducted, using 352 self-administered survey questionnaires. Data collected were analyzed through PLS-SEM analysis. The results show that awareness of consequences (AC) and ascription of responsibility (AR) influence personal norms, while attitude, perceived behavioral control, and personal norms (PN) have significant effect on behavioral intention (BI) to reduce food waste. Furthermore, PN partially mediates the relationship between AC and BI as well as AR and BI. This study offers critical insights which will benefit the Malaysian Government, Non-Governmental Organizations (NGOs), and other related parties in recognizing factors influencing the intention to reduce food waste which can be adopted to develop practical solutions to curb food waste in Malaysia.Implications: This study offers critical insights to the Malaysian Government, non-governmental organizations (NGOs), and other related parties in recognizing factors influencing the intention to reduce food waste which can be adopted to develop practical solutions to curb food waste in Malaysia.
  7. Wu X, Li C, Zhou Z, Nie X, Chen Y, Zhang Y, et al.
    Int J Adv Manuf Technol, 2021;117(9-10):2565-2600.
    PMID: 34465936 DOI: 10.1007/s00170-021-07854-1
    Cutting fluid has cooling and lubricating properties and is an important part of the field of metal machining. Owing to harmful additives, base oils with poor biodegradability, defects in processing methods, and unreasonable emissions of waste cutting fluids, cutting fluids have serious pollution problems, which pose challenges to global carbon emissions laws and regulations. However, the current research on cutting fluid and its circulating purification technique lacks systematic review papers to provide scientific technical guidance for actual production. In this study, the key scientific issues in the research achievements of eco-friendly cutting fluid and waste fluid treatment are clarified. First, the preparation and mechanism of organic additives are summarized, and the influence of the physical and chemical properties of vegetable base oils on lubricating properties is analyzed. Then, the process characteristics of cutting fluid reduction supply methods are systematically evaluated. Second, the treatment of oil mist and miscellaneous oil, the removal mechanism and approach of microorganisms, and the design principles of integrated recycling equipment are outlined. The conclusion is concluded that the synergistic effect of organic additives, biodegradable vegetable base oils and recycling purification effectively reduces the environmental pollution of cutting fluids. Finally, in view of the limitations of the cutting fluid and its circulating purification technique, the prospects of amino acid additive development, self-adapting jet parameter supply system, matching mechanism between processing conditions and cutting fluid are put forward, which provides the basis and support for the engineering application and development of cutting fluid and its circulating purification.
  8. Sun R, Balabanova A, Bajada CJ, Liu Y, Kriuchok M, Voolma SR, et al.
    Emotion, 2024 Mar;24(2):397-411.
    PMID: 37616109 DOI: 10.1037/emo0001235
    The COVID-19 pandemic presents challenges to psychological well-being, but how can we predict when people suffer or cope during sustained stress? Here, we test the prediction that specific types of momentary emotional experiences are differently linked to psychological well-being during the pandemic. Study 1 used survey data collected from 24,221 participants in 51 countries during the COVID-19 outbreak. We show that, across countries, well-being is linked to individuals' recent emotional experiences, including calm, hope, anxiety, loneliness, and sadness. Consistent results are found in two age, sex, and ethnicity-representative samples in the United Kingdom (n = 971) and the United States (n = 961) with preregistered analyses (Study 2). A prospective 30-day daily diary study conducted in the United Kingdom (n = 110) confirms the key role of these five emotions and demonstrates that emotional experiences precede changes in well-being (Study 3). Our findings highlight differential relationships between specific types of momentary emotional experiences and well-being and point to the cultivation of calm and hope as candidate routes for well-being interventions during periods of sustained stress. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
  9. Zhao X, Cheng H, Chen X, Zhang Q, Li C, Xie J, et al.
    J Am Chem Soc, 2024 Feb 07;146(5):3010-3022.
    PMID: 38278519 DOI: 10.1021/jacs.3c08177
    The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.
  10. Zhong H, Wu M, Sonne C, Lam SS, Kwong RWM, Jiang Y, et al.
    Eco Environ Health, 2023 Sep;2(3):142-151.
    PMID: 38074987 DOI: 10.1016/j.eehl.2023.07.004
    Increasing studies of plastisphere have raised public concern about microplastics (MPs) as vectors for pathogens, especially in aquatic environments. However, the extent to which pathogens affect human health through MPs remains unclear, as controversies persist regarding the distinct pathogen colonization on MPs as well as the transmission routes and infection probability of MP-associated pathogens from water to humans. In this review, we critically discuss whether and how pathogens approach humans via MPs, shedding light on the potential health risks involved. Drawing on cutting-edge multidisciplinary research, we show that some MPs may facilitate the growth and long-range transmission of specific pathogens in aquatic environments, ultimately increasing the risk of infection in humans. We identify MP- and pathogen-rich settings, such as wastewater treatment plants, aquaculture farms, and swimming pools, as possible sites for human exposure to MP-associated pathogens. This review emphasizes the need for further research and targeted interventions to better understand and mitigate the potential health risks associated with MP-mediated pathogen transmission.
  11. Chang CC, Li C, Webb GI, Tey B, Song J, Ramanan RN
    Sci Rep, 2016;6:21844.
    PMID: 26931649 DOI: 10.1038/srep21844
    Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified downstream purification process, but also enhances the probability of obtaining correctly folded and biologically active proteins. Different combinations of signal peptides and target proteins lead to different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate algorithms for rational selection of promising candidates can serve as a powerful tool to complement with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to predict the real-valued expression level of target protein in the periplasm. The output of the first-stage support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) classifier to be used. When tested on an independent test dataset, the predictor achieved an overall prediction accuracy of 78% and a Pearson's correlation coefficient (PCC) of 0.77. We further illustrate the relative importance of various features with respect to different models. The results indicate that the occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely accessible at http://lightning.med.monash.edu/periscope/.
  12. Meng Li C, Jie Ying F, Raj D, Pui Li W, Kukreja A, Omar SF, et al.
    J Int AIDS Soc, 2020 Nov;23(11):e25638.
    PMID: 33206473 DOI: 10.1002/jia2.25638
    INTRODUCTION: The rapidly growing epidemic of non-communicable diseases (NCDs) including mental health among aging people living with HIV (PLWH) has put a significant strain on the provision of health services in many HIV clinics globally. We constructed care cascades for specific NCDs and mental health among PLWH attending our centre to identify potential areas for programmatic improvement.

    METHODS: This was a follow-up study of participants recruited in the Malaysian HIV & Aging study (MHIVA) from 2014 to 2016 at the University Malaya Medical Centre (n = 336). PLWH on suppressive antiretroviral therapy (ART) for a minimum of 12 months were invited to participate. At study entry, all participants underwent screening for diabetes (DM), hypertension (HTN) and dyslipidaemia; and completed assessments using the depression, anxiety and stress scale (DASS-21). Screening results were recorded in medical charts and clinical management provided as per standard of care. A subsequent review of medical records was performed at 24 months following study completion among participants who remained on active follow-up. Treatment pathways for NCD treatment and psychiatric referrals were assessed based on local practice guidelines to construct the care cascade.

    RESULTS: A total of 329 participants (median age = 43 years, 83% male, 100% on ART) completed follow-up at 24 months. The prevalence of diabetes was 13%, dyslipidaemia 88% and hypertension 44%, whereas 23% presented with severe/extremely severe symptoms of depression, anxiety and/or stress. More than 50% of participants with dyslipidaemia and hypertension were not diagnosed until study screening, whereas over 80% with prevalent psychiatric symptoms were not previously recognized clinically. Suboptimal control of fasting lipids, sugar and blood pressure were found in the majority of participants despite optimal HIV treatment outcomes maintained over this same period. Only 32% of participants with severe/extremely severe mental health symptoms received psychiatric referrals and 83% of these attended their psychiatry clinic appointments.

    CONCLUSIONS: Systematic screening must be introduced to identify NCDs and mental health issues among PLWH followed by proper linkage and referrals for management of screen-positive cases. Assessment of factors associated with attrition at each step of the care cascade is critically needed to improve health outcomes in our aging patients.

  13. Jha K, Tyagi YK, Kumar R, Sharma S, Huzaifah MRM, Li C, et al.
    Polymers (Basel), 2021 Sep 24;13(19).
    PMID: 34641075 DOI: 10.3390/polym13193260
    In this investigation, biodegradable composites were fabricated with polycaprolactone (PCL) matrix reinforced with pine cone powder (15%, 30%, and 45% by weight) and compatibilized with graphite powder (0%, 5%, 10%, and 15% by weight) in polycaprolactone matrix by compression molding technique. The samples were prepared as per ASTM standard and tested for dimensional stability, biodegradability, and fracture energy with scanning electron micrographs. Water-absorption and thickness-swelling were performed to examine the dimensional stability and tests were performed at 23 °C and 50% humidity. Results revealed that the composites with 15 wt % of pine cone powder (PCP) have shown higher dimensional stability as compared to other composites. Bio-composites containing 15-45 wt % of PCP with low graphite content have shown higher disintegration rate than neat PCL. Fracture energy for crack initiation in bio-composites was increased by 68% with 30% PCP. Scanning electron microscopy (SEM) of the composites have shown evenly-distributed PCP particles throughout PCL-matrix at significantly high-degrees or quantities of reinforcing.
  14. Li C, Zhang Y, Wang C, Shen R, Gisen JIA, Mu J
    PMID: 37723386 DOI: 10.1007/s11356-023-29586-3
    In the context of global climate change and the influence of human activities, the concept of "sponge city" is put forward to realize the purification, collection, and reuse of rainwater. The effective evaluation of LID facilities in sponge cities is of great guiding significance for the promotion and construction of sponge cities. IFMS (Integrated Flood Modeling System) Urban was selected to construct the rainstorm simulation. LID parameters were added to simulate the improvement of urban waterlogging after the construction of sponge city. A reasonable disaster loss assessment method was used to calculate the disaster mitigation benefit brought by the construction of sponge city. Through the comparison of the inundation situation before and after LID facilities' construction, it can be concluded that the mitigation effect of LID facilities on the overall inundation area of the city decreases with the increase of rainfall recurrence period, with the maximum reduction rate reaching 13.63% in the 5-year recurrence period and the minimum reduction rate of 11.06% in the 50-year recurrence period. LID facilities have a better disaster reduction effect for rainfall events with a small recurrence period than for rainfall events with a large recurrence period.
  15. Dalvi R, Li CK, Yonemori K, Ariffin H, Lyu CJ, Farid M, et al.
    Ann Oncol, 2018 Nov;29 Suppl 9:ix121.
    PMID: 32177767 DOI: 10.1093/annonc/mdy442.001
  16. Shimizu H, Utama A, Onnimala N, Li C, Li-Bi Z, Yu-Jie M, et al.
    Pediatr Int, 2004 Apr;46(2):231-5.
    PMID: 15056257
    Recently, there have been large outbreaks of hand, foot and mouth disease (HFMD) mainly caused by enterovirus 71 (EV71) associated with severe neurological diseases in the Western Pacific Region (WPR). To monitor the realtime trend of EV71 transmission throughout the WPR, the authors conducted a molecular epidemiological analysis of EV71 infection.
  17. Wang J, Li C, Awasthi MK, Nyambura SM, Zhu Z, Li H, et al.
    J Environ Manage, 2024 Feb 27;353:120182.
    PMID: 38278112 DOI: 10.1016/j.jenvman.2024.120182
    Randomly collected food waste results in inaccurate experimental data with poor reproducibility for composting. This study investigated standard food waste samples as replacements for randomly collected food waste. A response surface methodology was utilised to analyse data from a 28-day compost process optimisation experiment using collected food waste, and the optimal combination of composting parameters was derived. Experiments using different standard food waste samples (high oil and salt, high oil and sugar, balanced diet, and vegetarian) were conducted for 28 days under optimal conditions. The ranking of differences between the standard samples and collected food waste was vegetarian > balanced diet > high oil and sugar > high oil and salt. Statistical analysis indicated t-tests for increased oil and salt samples and collected food waste were not significant, and Cohen's d effect values were minimal. High oil and salt samples can be used as replacements for collected food waste in composting experiments.
  18. Sun X, Liu YC, Tiunov MP, Gimranov DO, Zhuang Y, Han Y, et al.
    Nat Ecol Evol, 2023 Nov;7(11):1914-1929.
    PMID: 37652999 DOI: 10.1038/s41559-023-02185-8
    The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.
  19. Xu A, Lin Y, Sheng H, Cheng J, Mei H, Ting TH, et al.
    Pediatr Diabetes, 2020 05;21(3):431-440.
    PMID: 31957151 DOI: 10.1111/pedi.12985
    OBJECTIVE: The purpose of this study was to investigate the molecular basis of maturity-onset diabetes of the young (MODY) by whole-exome sequencing (WES) and estimate the frequency and describe the clinical characteristics of MODY in southern China.

    METHODS: Genetic analysis was performed in 42 patients with MODY aged 1 month to 18 years among a cohort of 759 patients with diabetes, identified with the following four clinical criteria: age of diagnosis ≤18 years; negative pancreatic autoantibodies; family history of diabetes; or persistently detectable C-peptide; or diabetes associated with extrapancreatic features. GCK gene mutations were first screened by Sanger sequencing. GCK mutation-negative patients were further analyzed by WES.

    RESULTS: Mutations were identified in 24 patients: 20 mutations in GCK, 1 in HNF4A, 1 in INS, 1 in ABCC8, and a 17q12 microdeletion. Four previously unpublished novel GCK mutations: c.1108G>C in exon 9, and c.1339C>T, c.1288_1290delCTG, and c.1340_1343delGGGGinsCTGGTCT in exon 10 were detected. WES identified a novel missense mutation c.311A>G in exon 3 in the INS gene, and copy number variation analysis detected a 1.4 Mb microdeletion in the long arm of the chromosome 17q12 region. Compared with mutation-negative subjects, the mutation-positive subjects had lower hemoglobin A1c and initial blood glucose levels.

    CONCLUSIONS: Most MODY cases in this study were due to GCK mutations, which is in contrast to previous reports in Chinese patients. Diabetes associated with extrapancreatic features should be a clinical criterion for MODY genetic analysis. Mutational analysis by WES provided a precise diagnosis of MODY subtypes. Moreover, WES can be useful for detecting large deletions in coding regions in addition to point mutations.

  20. Li C, Yi T, Zhang S, Ma C, Liu H
    Front Psychol, 2022;13:989581.
    PMID: 36186311 DOI: 10.3389/fpsyg.2022.989581
    Teacher beliefs are a pivotal psychological quality for sustainable teacher development. Previous studies have mainly focused on the beliefs of English-as-a-second/foreign-language (ESL/EFL) teachers, while little attention has been paid to those of Chinese-as-an-additional-language (CAL) teachers. Particularly, there is a paucity of effort made to develop and validate instrument for measuring pre-service CAL teacher beliefs. Therefore, to further quantify the beliefs of CAL teachers is increasingly called for as an essential means to help teachers sensitize their beliefs system and promote teacher development as a sustainable goal. To be specific, the present study aims to construct a scale for gauging beliefs of pre-service CAL teachers. It firstly conceptualizes the dimensions of pre-service CAL teacher beliefs by means of semantic analysis with ROST CM6, and then cross-validates the reliability and validity of the scale with psychometric methods. Two independent samples composed of 221 and 222 pre-service CAL teachers participated in a questionnaire survey. The two samples were utilized for later Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA), respectively. The two data sets have satisfactory psychometric results, all confirming that the scale subsumes three factors: Beliefs about Chinese Language Teaching (BCLT), Beliefs about Chinese Language (BCL), and Beliefs about Chinese Language Learners (BCLL). The scale validated in the present study contributes to research on pre-service CAL teacher beliefs, and provides implications for sustainable pre-service CAL teacher training.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links