Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Abbasi MA, Irshad M, Aziz-Ur-Rehman -, Siddiqui SZ, Nazir M, Ali Shah SA, et al.
    Pak J Pharm Sci, 2020 Sep;33(5):2161-2170.
    PMID: 33824125
    In the presented work, 2,3-dihydro-1,4-benzodioxin-6-amine (1) was reacted with 4-chlorobenzenesulfonyl chloride (2) in presence of aqueous basic aqueous medium to obtain 4-chloro-N-(2,3-dihydro-1,4-benzodioxin-6-yl)benzenesulfonamide (3). In parallel, various un/substituted anilines (4a-l) were treated with bromoacetyl bromide (5) in basified aqueous medium to obtain corresponding 2-bromo-N-(un/substituted)phenylacetamides (6a-l) as electrophiles. Then the compound 3 was finally reacted with these electrophiles, 6a-l, in dimethylformamide (DMF) as solvent and lithium hydride as base and activator to synthesize a variety of 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(un/substituted)phenylacetamides (7a-l). The synthesized compounds were corroborated by IR, 1H-NMR and EI-MS spectral data for structural confirmations. These molecules were then evaluated for their antimicrobial and antifungal activities along with their %age hemolytic activity. Some compounds were found to have suitable antibacterial and antifungal potential, especially the compound 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(3,5-dimethylphenyl)acetamide (7l) exhibited good antimicrobial potential with low value of % hemolytic activity.
  2. Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, et al.
    ACS Omega, 2021 Mar 30;6(12):8210-8225.
    PMID: 33817480 DOI: 10.1021/acsomega.0c06242
    The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.
  3. Huang P, Huang S, Ma Y, Danish S, Hareem M, Syed A, et al.
    BMC Plant Biol, 2024 Jan 23;24(1):63.
    PMID: 38262953 DOI: 10.1186/s12870-024-04753-x
    Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.
  4. Ibrahim IR, Matori KA, Ismail I, Awang Z, Rusly SNA, Nazlan R, et al.
    Sci Rep, 2020 Feb 21;10(1):3135.
    PMID: 32081972 DOI: 10.1038/s41598-020-60107-1
    Microwave absorption properties were systematically studied for double-layer carbon black/epoxy resin (CB) and Ni0.6Zn0.4Fe2O4/epoxy resin (F) nanocomposites in the frequency range of 8 to 18 GHz. The Ni0.6Zn0.4Fe2O4 nanoparticles were synthesized via high energy ball milling with subsequent sintering while carbon black was commercially purchased. The materials were later incorporated into epoxy resin to fabricate double-layer composite structures with total thicknesses of 2 and 3 mm. The CB1/F1, in which carbon black as matching and ferrite as absorbing layer with each thickness of 1 mm, showed the highest microwave absorption of more than 99.9%, with minimum reflection loss of -33.8 dB but with an absorption bandwidth of only 2.7 GHz. Double layer absorbers with F1/CB1(ferrite as matching and carbon black as absorbing layer with each thickness of 1 mm) structure showed the best microwave absorption performance in which more than 99% microwave energy were absorbed, with promising minimum reflection loss of -24.0 dB, along with a wider bandwidth of 4.8 GHz and yet with a reduced thickness of only 2 mm.
  5. Hospet R, Thangadurai D, Cruz-Martins N, Sangeetha J, Anu Appaiah KA, Chowdhury ZZ, et al.
    Crit Rev Food Sci Nutr, 2023;63(17):2960-2969.
    PMID: 34592865 DOI: 10.1080/10408398.2021.1983763
    Strains' improvement technology plays an essential role in enhancing the quality of industrial strains. Several traditional methods and modern techniques have been used to further improve strain engineering programs. The advances stated in strain engineering and the increasing demand for microbial metabolites leads to the invention of the genome shuffling technique, which ensures a specific phenotype improvement through inducing mutation and recursive protoplast fusion. In such technique, the selection of multi-parental strains with distinct phenotypic traits is crucial. In addition, as this evolutionary strain improvement technique involves combinative approaches, it does not require any gene sequence data for genome alteration and, therefore, strains developed by this elite technique will not be considered as genetically modified organisms. In this review, the different stages involved in the genome shuffling technique and its wide applications in various phenotype improvements will be addressed. Taken together, data discussed here highlight that the use of genome shuffling for strain improvement will be a plus for solving complex phenotypic traits and in promoting the rapid development of other industrially important strains.
  6. Ali Khan MS, Misbah, Ahmed N, Arifuddin M, Rehman A, Ling MP
    Food Chem Toxicol, 2018 Jun 05.
    PMID: 29883785 DOI: 10.1016/j.fct.2018.06.007
    Flowers of Tabernaemontana divaricata (L.) R. Br., (Apocynaceae) are used in traditional medicine for analgesic property. The present study was performed to isolate the active principles and investigate the mechanisms involved in the anti-nociception caused by T. divaricata flower methanolic extract (TDFME). The extract in the doses of 125, 250 and 500 mg/kg, p.o was subjected to various assays in acetic acid induced abdominal writhing and formalin induced paw licking test models. Naloxone, L-Arginine, Glibenclamide and Glutamate were used as inducers while Morphine, L-NAME, Methylene blue and Aspirin served as standard drugs. The phytochemical analysis led to the isolation of three indole alkaloids namely Voacangine, Catharanthine and O-acetyl Vallesamine. The anti-nociception produced by TDFME was attenuated significantly (p< 0.001) by the intra-peritoneal pretreatment of naloxone, L-Arginine and glibenclamide. The nociception produced by glutamate was inhibited by TDFME. TDFME also enhanced the antinociceptive activity of L-NAME when given in combination. However TDFME co-administration did not produce significant results with methylene blue indicating lack of cGMP involvement. These results indicate that TDFME produces anti-nociception action mediated by opioid, nitric oxide, K+-ATP and glutamate mechanisms and the effect is largely related to the indole alkaloids.
  7. Ali Khan MS, Ahmed N, Misbah, Arifuddin M, Zakaria ZA, Al-Sanea MM, et al.
    Food Chem Toxicol, 2018 May;115:523-531.
    PMID: 29555329 DOI: 10.1016/j.fct.2018.03.021
    In view of the report on anti-nociceptive activity of Leathery Murdah, Terminalia coriacea {Roxb.} Wight & Arn. (Combretaceae) leaves, the present study was conducted to isolate the active constituents and identify the underlying mechanisms. The methanolic extract of T. coriacea leaves (TCLME) at doses 125, 250 and 500 mg/kg orally, was subjected to various in-vivo assays in acetic acid induced writhing and formalin induced paw-licking tests with aspirin (100 mg/kg) and morphine (5 mg/kg) as reference drugs. Three flavonoids, rutin, robinin and gossypetin 3-glucuronide 8-glucoside were isolated and characterized from TCLME for the first time. The extract showed significant (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links