Displaying publications 21 - 40 of 125 in total

Abstract:
Sort:
  1. Ayanda AF, Jusop S, Ishak CF, Othman R
    PLoS One, 2020;15(6):e0234045.
    PMID: 32544208 DOI: 10.1371/journal.pone.0234045
    A study was conducted to determine the impact of applying different sources of Mg, namely kieserite, ground magnesium limestone (GML) and Mg-rich synthetic gypsum (MRSG) on an acid tropical soil, oil palm growth and production. Besides high amount of Mg and Ca, MRSG contains S. Exchangeable Ca in the untreated soil of the plantation was 0.64 cmolc kg-1, but its critical level to sustain oil palm growth was 0.9 cmolc kg-1. MRSG was applied in the plantation as Mg-fertilizer; however, since Ca is also a limiting nutrient, oil palm growth was correlated (r = 0.69) with Ca supplied by the MRSG. Mg needed to sustain oil palm production is normally supplied by kieserite. Its requirement can be met at a lower cost compared to that of the kieserite by using MRSG. Due to MRSG treatment, exchangeable Ca in the soil increased steadily to satisfy the requirement of oil palm for fruit bunches production. From the glasshouse and field study, it was observed that MRSG applied at 1.5 times the recommended rate gave results comparable to that of the kieserite. MRSG treatment resulted in the increase of soil pH to >5 that precipitated Al3+ as inert Al-hydroxides, which eventually enhanced oil palm seedlings growth. Thus, MRSG can also replace GML to increase soil pH and satisfy the Ca and Mg requirement of oil palm. It can be concluded that MRSG has the potential to be used as a source of Mg as well as Ca for oil palm grown on acidic soil.
  2. Joseph J, Nishizawa H, Jalimin SN, Othman R, Jaaman SA, Bali J, et al.
    PLoS One, 2023;18(11):e0293979.
    PMID: 37943882 DOI: 10.1371/journal.pone.0293979
    Long-term monitoring of sea turtle aggregations is critical for understanding the impacts of environmental changes on their population health and habitat suitability. Brunei Bay is a significant foraging ground for green turtles in the South China Sea. We analyzed the body size, hematology and body condition of green turtles for their health status in their foraging ground in Brunei Bay over a period of nine years (2011-2019). Additionally, we used mitochondrial DNA (mtDNA) to evaluate changes in the size and genetic composition of green turtle aggregations. Our findings revealed that the size composition of the green turtle population varied seasonally, but there were no significant temporal changes in genetic and size compositions. Hematology parameters and Fulton's body condition index were consistent with those reported for apparently healthy green turtles. Furthermore, we found that blood reference intervals indicated the turtles were healthy. These results provide valuable baseline data for future comparisons with other foraging aggregations and for long-term monitoring of green turtles in Brunei Bay.
  3. Masdor NA, Kandayah T, Amsah N, Othman R, Hassan MR, Rahim SSSA, et al.
    PLoS One, 2023;18(8):e0285533.
    PMID: 37590252 DOI: 10.1371/journal.pone.0285533
    BACKGROUND: Schistosomiasis is a parasitic infection that causes significant public health problems in tropical countries. Schistosoma haematobium species are blamable for causing urinary schistosomiasis. The infected person, specifically children, may be carrying the disease. This systematic review aimed to identify the current knowledge of urinary Schistosmiasis in children or USC on its epidemiology, risk factors, and challenges to spread the understanding of controlling the disease and reducing the complications.

    METHOD: In November 2021, a systematic computer-aided literature review was conducted using PubMed, SCOPUS and Web of Science, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The results were updated in February 2022. We only used papers that have at least the abstract available in English. Relevant articles were screened, duplicates were deleted, eligibility criteria were applied, and studies that met the criteria were reviewed. The keywords Human Schistosoma infections, prevalence, risk factors and challenges were included. The protocol for the review was registered with PROSPERO (registration number CRD42022311609). Pooled prevalence rates were calculated using the programme R version 4.2.1. Heterogeneity was assessed using the I2 statistic and p-value. A narrative approach was used to describe risk factors and challenges. Studies were selected and finalised based on the review question to prioritise. The quality of the included studies was assessed using the Mixed-Method Appraisal Tool (MMAT).

    RESULTS: A total of 248 publications met the requirements for inclusion. Fifteen articles were included in this review, with the result showing high heterogeneity. The pooled prevalence of urinary schistosomiasis in children is 4% (95% confidence interval (CI)). Age, poor socioeconomic status, education, exposure to river water, and poor sanitation are the risk factors identified in this review. Challenges are faced due to limitations of clean water, lack of water resources, and poor hygiene.

    CONCLUSION: Modifiable risk factors such as poor knowledge and practices must be addressed immediately. Healthcare providers and schools could accomplish engaging in practical promotional activities. Communicating the intended messages to raise community awareness of urinary schistosomiasis is critical.

  4. Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH
    PLoS One, 2016;11(3):e0152478.
    PMID: 27011317 DOI: 10.1371/journal.pone.0152478
    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with PGPR, namely, B. pumilus S1r1, K. pneumoniae Fr1, B. subtilis UPMB10 and Acinetobacter sp. S3r2 at D65 harvest. This study provides evidence that PGPR inoculation, namely, B. pumilus S1r1 can biologically fix atmospheric N2 and provide an alternative technique, besides plant breeding, to delay N remobilisation in maize plant for higher ear yield (up to 30.9%) with reduced fertiliser-N input.
  5. Salim LZ, Othman R, Abdulla MA, Al-Jashamy K, Ali HM, Hassandarvish P, et al.
    PLoS One, 2014;9(12):e115340.
    PMID: 25531768 DOI: 10.1371/journal.pone.0115340
    BACKGROUND: Thymoquinone is an active ingredient isolated from Nigella sativa (Black Seed). This study aimed to evaluate the in vitro and in vivo anti-leukemic effects of thymoquinone on WEHI-3 cells.

    METHODOLOGY/PRINCIPAL FINDINGS: The cytotoxic effect of thymoquinone was assessed using an MTT assay, while the inhibitory effect of thymoquinone on murine WEHI-3 cell growth was due to the induction of apoptosis, as evidenced by chromatin condensation dye, Hoechst 33342 and acridine orange/propidium iodide fluorescent staining. In addition, Annexin V staining for early apoptosis was performed using flowcytometric analysis. Apoptosis was found to be associated with the cell cycle arrest at the S phase. Expression of Bax, Bcl2 and HSP 70 proteins were observed by western blotting. The effects of thymoquinone on BALB/c mice injected with WEHI-3 cells were indicated by the decrease in the body, spleen and liver weights of the animal, as compared to the control.

    CONCLUSION: Thymoquinone promoted natural killer cell activities. This compound showed high toxicity against WEHI-3 cell line which was confirmed by an increase of the early apoptosis, followed by up-regulation of the anti-apoptotic protein, Bcl2, and down-regulation of the apoptotic protein, Bax. On the other hand, high reduction of the spleen and liver weight, and significant histopathology study of spleen and liver confirmed that thymoquinone inhibited WEHI-3 growth in the BALB/c mice. Results from this study highlight the potential of thymoquinone to be developed as an anti-leukemic agent.

  6. Ashokhan S, Othman R, Abd Rahim MH, Karsani SA, Yaacob JS
    Plants (Basel), 2020 Mar 11;9(3).
    PMID: 32168737 DOI: 10.3390/plants9030352
    For centuries, Azadirachta indica or neem has been utilized as a primary source of medicine due to its antimicrobial, larvacidal, antimalarial and antifungal properties. Recently, its potential as an effective biopesticide has garnered attention, especially towards efficient and continuous production of its bioactive compounds. The present study investigated the effect of the plant growth regulators (PGRs) thiadiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) on the induction of colored callus formation and subsequent accumulation of azadirachtin (AZA) in A. indica. An efficient protocol was established for micropropagation and colored callus production of this species, followed by quantification of AZA (a mixture of azadirachtin A and B) and its safety assessment. For induction of the callus, leaf and petiole explants obtained from a young growing neem plant were excised and cultured on Murashige and Skoog (MS) medium supplemented with TDZ (0.2-0.6 mg L-1) and 2,4-D (0.2-0.6 mg L-1), either applied singly or in combination. Callus was successfully induced from both explant types at different rates, where media with 0.6 mg L-1 of TDZ resulted in the highest fresh weight (3.38 ± 0.08 g). In general, media with a single hormone (particularly TDZ) was more effective in producing a high mass of callus compared to combined PGRs. A culture duration of six weeks resulted in the production of green, brown and cream colored callus. The highest callus weight and accumulation of AZA was recorded in green callus (214.53 ± 33.63 mg g-1 dry weight (DW)) induced using TDZ. On the other hand, small amounts of AZA were detected in both brown and cream callus. Further experimentation indicated that the green callus with the highest AZA was found to be non-toxic (LC50 at 4606 µg mL-1) to the zebrafish animal model. These results suggested that the addition of different PGRs during in vitro culture could prominently affect callus and secondary metabolite production and can further be manipulated as a sustainable method for the production of a natural and environmentally friendly pesticide.
  7. Othman R, Ibrahim H, Mohd MA, Mustafa MR, Awang K
    Phytomedicine, 2006 Jan;13(1-2):61-6.
    PMID: 16360934
    Bioassay-guided fractionation was performed on a crude dichloromethane extract of Kaempferia galanga L. using chromatography techniques. Screening of the extract for biological activity started with the brine shrimp lethality bioassay, followed by the study of its antihypertensive activity on anaesthetized rats, which involved monitoring of the extract's effect on mean arterial blood pressure. The components of the fractions obtained from the separation procedures were analyzed using gas chromatography (GC). The yield of the CH(2)Cl(2) extract was 0.29% of the crude plant extract. Analysis of the data for brine shrimp lethality test using the Finney computer program showed that this extract exhibited potent bioactivity with an ED(50) value of 7.92+/-0.13 microgml(-1). Intravenous administration of the extract induced a dose-related reduction of basal mean arterial pressure (MAP) (130+/-5 mmHg) in the anaesthetized rat, with maximal effects seen after 5-10 min of injection. The gas chromatogram showed that the common compound in the active fractions obtained from the bioassay-guided fractionation of the CH(2)Cl(2) extract was ethyl cinnamate. This vasorelaxant active compound, ethyl cinnamate, was isolated as a colorless oil. Ethyl p-methoxycinnamic acid was also isolated as white needles but did not exhibit any relaxant effect on the precontracted thoracic rat aorta.
  8. Balasubramaniam S, Lee HC, Lazan H, Othman R, Ali ZM
    Phytochemistry, 2005 Jan;66(2):153-63.
    PMID: 15652572
    beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.
  9. Ker DS, Chan KG, Othman R, Hassan M, Ng CL
    Phytochemistry, 2020 May;173:112286.
    PMID: 32059132 DOI: 10.1016/j.phytochem.2020.112286
    The chemical formation of terpenes in nature is carried out by terpene synthases as the main biocatalysts to guide the carbocation intermediate to form structurally diverse compounds including acyclic, mono- and multiple cyclic products. Despite intensive study of the enzyme active site, the mechanism of specific terpene biosynthesis remains unclear. Here we demonstrate that a single mutation of the amino acid L454G or L454A in the active site of Persicaria minor β-sesquiphellandrene synthase leads to a more promiscuous enzyme that is capable of producing additional hydroxylated sesquiterpenes such as sesquicineole, sesquisabinene hydrate and α-bisabolol. Furthermore, the same L454 residue mutation (L454G or L454A) in the active site also improves the protein homogeneity compared to the wild type protein. Taken together, our results demonstrate that residue Leucine 454 in the active site of β-sesquiphellandrene synthase is important for sesquiterpene product diversity as well as the protein homogeneity in solution.
  10. Simone E, Othman R, Vladisavljević GT, Nagy ZK
    Pharmaceutics, 2018 Jan 24;10(1).
    PMID: 29364167 DOI: 10.3390/pharmaceutics10010017
    In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80w/wacetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM); and particle vision and measurement (PVM) were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.
  11. Ker DS, Pang SL, Othman NF, Kumaran S, Tan EF, Krishnan T, et al.
    PeerJ, 2017;5:e2961.
    PMID: 28265494 DOI: 10.7717/peerj.2961
    BACKGROUND: Sesquiterpenes are 15-carbon terpenes synthesized by sesquiterpene synthases using farnesyl diphosphate (FPP) as a substrate. Recently, a sesquiterpene synthase gene that encodes a 65 kDa protein was isolated from the aromatic plant Persicaria minor. Here, we report the expression, purification and characterization of recombinant P. minor sesquiterpene synthase protein (PmSTS). Insights into the catalytic active site were further provided by structural analysis guided by multiple sequence alignment.

    METHODS: The enzyme was purified in two steps using affinity and size exclusion chromatography. Enzyme assays were performed using the malachite green assay and enzymatic product was identified using gas chromatography-mass spectrometry (GC-MS) analysis. Sequence analysis of PmSTS was performed using multiple sequence alignment (MSA) against plant sesquiterpene synthase sequences. The homology model of PmSTS was generated using I-TASSER server.

    RESULTS: Our findings suggest that the recombinant PmSTS is mainly expressed as inclusion bodies and soluble aggregate in the E. coli protein expression system. However, the addition of 15% (v/v) glycerol to the protein purification buffer and the removal of N-terminal 24 amino acids of PmSTS helped to produce homogenous recombinant protein. Enzyme assay showed that recombinant PmSTS is active and specific to the C15 substrate FPP. The optimal temperature and pH for the recombinant PmSTS are 30 °C and pH 8.0, respectively. The GC-MS analysis further showed that PmSTS produces β-sesquiphellandrene as a major product and β-farnesene as a minor product. MSA analysis revealed that PmSTS adopts a modified conserved metal binding motif (NSE/DTE motif). Structural analysis suggests that PmSTS may binds to its substrate similarly to other plant sesquiterpene synthases.

    DISCUSSION: The study has revealed that homogenous PmSTS protein can be obtained with the addition of glycerol in the protein buffer. The N-terminal truncation dramatically improved the homogeneity of PmSTS during protein purification, suggesting that the disordered N-terminal region may have caused the formation of soluble aggregate. We further show that the removal of the N-terminus disordered region of PmSTS does not affect the product specificity. The optimal temperature, optimal pH, Km and kcat values of PmSTS suggests that PmSTS shares similar enzyme characteristics with other plant sesquiterpene synthases. The discovery of an altered conserved metal binding motif in PmSTS through MSA analysis shows that the NSE/DTE motif commonly found in terpene synthases is able to accommodate certain level of plasticity to accept variant amino acids. Finally, the homology structure of PmSTS that allows good fitting of substrate analog into the catalytic active site suggests that PmSTS may adopt a sesquiterpene biosynthesis mechanism similar to other plant sesquiterpene synthases.

  12. Al-Madhagi WM, Mohd Hashim N, Awad Ali NA, Alhadi AA, Abdul Halim SN, Othman R
    PeerJ, 2018;6:e4839.
    PMID: 29892499 DOI: 10.7717/peerj.4839
    Background: Peperomia belongs to the family of Piperaceae. It has different uses in folk medicine and contains rare compounds that have led to increased interest in this genus. Peperomia blanda (Jacq.) Kunth is used as an injury disinfectant by Yemeni people. In addition, the majority of Yemen's population still depend on the traditional remedy for serious diseases such as cancer, inflammation and infection. Currently, there is a deficiency of scientific evidence with regards to the medicinal plants from Yemen. Therefore, this study was performed to assess the chemical profile and in vitro antioxidant and cytotoxic activities of P. blanda.

    Methods: Chemical profiling of P. blanda was carried out using gas chromatography mass spectrometry (GCMS) followed by isolation of bioactive compounds by column chromatography. DPPH• and FRAP assays were used to evaluate antioxidant activity and the MTT assay was performed to estimate the cytotoxicity activity against three cancer cell lines, namely MCF-7, HL-60 and WEHI-3, and three normal cell lines, MCF10A, WRL-68 and HDFa.

    Results: X-ray crystallographic data for peperomin A is reported for the first time here and N,N'-diphenethyloxamide was isolated for the first time from Peperomia blanda. Methanol and dichloromethane extracts showed high radical scavenging activity with an IC50 of 36.81 ± 0.09 µg/mL, followed by the dichloromethane extract at 61.78 ± 0.02 µg/mL, whereas the weak ferric reducing activity of P. blanda extracts ranging from 162.2 ± 0.80 to 381.5 ± 1.31 µg/mL were recorded. In addition, petroleum ether crude extract exhibited the highest cytotoxic activity against all the tested cancer cell lines with IC50 values of 9.54 ± 0.30, 4.30 ± 0.90 and 5.39 ± 0.34 µg/mL, respectively. Peperomin A and the isolated mixture of phytosterol (stigmasterol and β-sitosterol) exhibited cytotoxic activity against MCF-7 and WE-HI cell lines with an IC50 of (5.58 ± 0.47, 4.62 ± 0.03 µg/mL) and (8.94 ± 0.05, 9.84 ± 0.61 µg/mL), respectively, compared to a standard drug, taxol, that has IC50 values of 3.56 ± 0.34 and 1.90 ± 0.9 µg/mL, respectively.

    Conclusion: The activities of P. blanda extracts and isolated compounds recorded in this study underlines the potential that makes this plant a valuable source for further study on anticancer and antioxidant activities.

  13. Sundram S, Meon S, Seman IA, Othman R
    Mycorrhiza, 2015 Jul;25(5):387-97.
    PMID: 25492807 DOI: 10.1007/s00572-014-0620-5
    The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment.
  14. Salim LZ, Mohan S, Othman R, Abdelwahab SI, Kamalidehghan B, Sheikh BY, et al.
    Molecules, 2013 Sep 12;18(9):11219-40.
    PMID: 24036512 DOI: 10.3390/molecules180911219
    There has been a growing interest in naturally occurring compounds from traditional medicine with anti-cancer potential. Nigella sativa (black seed) is one of the most widely studied plants. This annual herb grows in countries bordering the Mediterranean Sea and India. Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa. The anti-cancer effect of TQ, via the induction of apoptosis resulting from mitochondrial dysfunction, was assessed in an acute lymphocyte leukemic cell line (CEMss) with an IC50 of 1.5 µg/mL. A significant increase in chromatin condensation in the cell nucleus was observed using fluorescence analysis. The apoptosis was then confirmed by Annexin V and an increased number of cellular DNA breaks in treated cells were observed as a DNA ladder. Treatment of CEMss cells with TQ encouraged apoptosis with cell death-transducing signals by a down-regulation of Bcl-2 and up-regulation of Bax. Moreover, the significant generation of cellular ROS, HSP70 and activation of caspases 3 and 8 were also observed in the treated cells. The mitochondrial apoptosis was clearly associated with the S phase cell cycle arrest. In conclusion, the results from the current study indicated that TQ could be a promising agent for the treatment of leukemia.
  15. Sukumaran SD, Chee CF, Viswanathan G, Buckle MJ, Othman R, Abd Rahman N, et al.
    Molecules, 2016 Jul 22;21(7).
    PMID: 27455222 DOI: 10.3390/molecules21070955
    A series of 2'-hydroxy- and 2'-hydroxy-4',6'-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE). The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40-85 µM. Higher activities were generally observed for compounds with methoxy substituents in the A ring and halogen substituents in the B ring. Kinetic studies on the most active compounds showed that they act as mixed-type inhibitors, in agreement with the results of molecular modelling studies, which suggested that they interact with residues in the peripheral anionic site and the gorge region of AChE.
  16. Gwaram NS, Ali HM, Abdulla MA, Buckle MJ, Sukumaran SD, Chung LY, et al.
    Molecules, 2012 Feb 28;17(3):2408-27.
    PMID: 22374313 DOI: 10.3390/molecules17032408
    Alzheimer's disease (AD) is the most common form of dementia among older people and the pathogenesis of this disease is associated with oxidative stress. Acetylcholinesterase inhibitors with antioxidant activities are considered potential treatments for AD. Some novel ketone derivatives of gallic hydrazide-derived Schiff bases were synthesized and examined for their antioxidant activities and in vitro and in silico acetyl cholinesterase inhibition. The compounds were characterized using spectroscopy and X-ray crystallography. The ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays revealed that all the compounds have strong antioxidant activities. N-(1-(5-bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2) was the most potent inhibitor of human acetyl cholinesterase, giving an inhibition rate of 77% at 100 μM. Molecular docking simulation of the ligand-enzyme complex suggested that the ligand may be positioned in the enzyme's active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl binding pocket (ABP). The current work warrants further preclinical studies to assess the potential for these novel compounds for the treatment of AD.
  17. Al-Thiabat MG, Gazzali AM, Mohtar N, Murugaiyah V, Kamarulzaman EE, Yap BK, et al.
    Molecules, 2021 Aug 31;26(17).
    PMID: 34500740 DOI: 10.3390/molecules26175304
    Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated system compared to unconjugated and apo systems (ligand free). Docking studies revealed that the conjugated FA bound into the active site of FRα with a docking score (free binding energy < -15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA-βCDs created more dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with stable RMSD values ranging from 1.9-2.4 Å and the average residual fluctuation values of the FRα backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215) were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time (0-100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the residues (except residues 149-151) compared to FA-FRα and apo-FRα systems. Further analysis of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have more favourable energy contributions in the holo systems than in the apo-FRα system, and these residues might have a direct role in increasing the stability of holo systems.
  18. Hazreen Nita MK, Kua BC, Bhassu S, Othman RY
    Mol Biol Rep, 2012 Apr;39(4):3785-90.
    PMID: 21755294 DOI: 10.1007/s11033-011-1155-x
    Infectious hypodermal and haematopoietic necrosis virus (IHHNV) has been detected widely in penaeid culture facilities in Asia and the Americas. IHHNV infection on sub-adult and postlarvae of the giant freshwater prawn, Macrobrachium rosenbergii which had caused up to 80% mortalities was first reported in Southeast Taiwan in 2006. In Malaysia, although, there has been no report on IHHNV infections in M. rosenbergii, preliminary work suggests that there is an urgent need to setup a screening protocol for IHHNV for both wild and cultured populations. In this study, polymerase chain reaction based screening was carried out on 30 randomly sampled berried wild M. rosenbergii before and after spawning. All samples did not showed any sign of IHHNV infection. However, the results showed that 20% of the samples were IHHNV positive. Sequence analysis of the amplified band using NCBI-BLAST showed that the putative IHHNV sequence had 98% nucleotide sequence (388 bp) identity with the IHHNV isolate AC-05-005 non-structural protein 1 gene and seven other IHHNV strains in the data bank further affirming the suggestion on the presence of IHHNV in wild freshwater prawn populations in Malaysia.
  19. Hossain S, Manan H, Shukri ZNA, Othman R, Kamaruzzan AS, Rahim AIA, et al.
    Microbiol Res, 2023 Jan;266:127239.
    PMID: 36327659 DOI: 10.1016/j.micres.2022.127239
    Microplastics pollution has become a threat to aquaculture practices, as nearly all farming systems are saturated with microplastics (MPs) particles. Current research on MPs is limited considering their effects on aquatic organisms and human health. However, limited research has been conducted on potential cures and treatments. In today's world, bioremediation of needful parameters in different culture systems is being successfully practiced by introducing floc-forming bacteria. Researchers had found that some bacteria are efficacious in degrading microplastics particles including polyethylene (PE), polystyrene (PS), and polypropylene (PP). In addition, some bacteria that can form floc, are being used in fish and shellfish culture systems to treat toxic pollutants as the heterotrophic bacteria use organic compounds to grow and are effective in degrading microplastics and minimizing toxic nitrogen loads in aquaculture systems. In this review, the ability of biofloc bacteria to degrade microplastics has been summarized by collating the results of previous studies. The concept of this review may represent the efficacy of biofloc technology as an implicit tool in the fish culture system restricting the MPs contamination in water resources to safeguard ecological as well as human health.
  20. Alinejad T, Bin KQ, Vejayan J, Othman RY, Bhassu S
    Meta Gene, 2015 Sep;5:55-67.
    PMID: 26106581 DOI: 10.1016/j.mgene.2015.05.004
    Epizootic diseases cause huge mortality and economical loses at post larvae stages in freshwater prawn aquaculture industry. These prawns seem less susceptible to viral diseases except for infectious hypodermal and hematopoietic necrosis virus (IHHNV). During viral infection in prawns, hemocytes are the primary organ that shows immunological response within the early stages of infection. We applied proteomic approaches to understand differential expression of the proteins in hemocytes during the viral disease outbreak. To aid the goal, we collected Macrobrachium rosenbergii broodstocks from the local grow out hatchery which reported the first incidence of IHHNV viral outbreak during larvae stage. Primarily, application of the OIE primer targeting 389 bp fragments of IHHNV virus was used in identification of the infected and non-infected samples of the prawn breeding line. Analysis of two-dimensional gel electrophoresis showed specific down-regulation of Arginine kinase and Sarcoplasmic calcium-binding protein and up/down-regulation of Prophenoloxidase1 and hemocyanin isoforms. These proteins were validated using semi quantitative RT-PCR and gene transcripts at mRNA level. These identified proteins can be used as biomarkers, providing a powerful approach to better understanding of the immunity pathway of viral disease with applications in analytic and observational epidemiology diagnosis. Proteomic profiling allows deep insight into the pathogenesis of IHHNV molecular regulation and mechanism of hemocyte in freshwater prawns.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links