Displaying publications 21 - 40 of 166 in total

Abstract:
Sort:
  1. Rahman RA, Ghazali NM, Rahman NA, Pohchi A, Razak NHA
    J Craniofac Surg, 2020 Jun;31(4):1056-1062.
    PMID: 32176023 DOI: 10.1097/SCS.0000000000006297
    OBJECTIVES: This study aimed to determine the pattern of fractured zygoma, different treatment modalities, and complications of the treatment in our center. It also aimed to determine the association between the treatment modalities and complication of treatment, and association between number of fixation and complication.

    METHODOLOGY: A retrospective review was conducted from January 2008 until December 2011. All patients diagnosed with zygomatic complex fractured that met the inclusion and exclusion criteria were included in the study. Zingg's Classification was used in the study.

    RESULTS: The median age was 23.5. Type A was the most common fracture type made up 26.6%. About 90.8% of the injury was caused by road traffic accident. Forty-four patients were treated with open reduction and internal fixation and 4 patients were treated with close reduction only. Fifty patients were treated conservatively. Gillies approach in combination with fixation is the most common procedure accounted for 50%. Three-point fixation at infraorbital, maxillary buttress, frontozygomatic suture, and zygomatic arch was the most common site. However, there were no significant associations between the number of fixation and the occurrence of the complication (P = 0.307). About 29.2% in the treatment group and 66% in the conservative group had complications. About 35.7% of patients in treatment group had complications, while 66% had trismus in conservative group.

    CONCLUSION: There was a significant association between types of treatment and the occurrence of complication (P = 0.001). However, there were no significant association between number of fixation and the occurrence of complications (P = 0.307).

  2. Ghazali N, Rahman NA, Kannan TP, Jaafar S
    Cleft Palate Craniofac J, 2015 07;52(4):e88-94.
    PMID: 26151095 DOI: 10.1597/14-024
    OBJECTIVE: To determine the prevalence of mutations in transforming growth factor beta 3 (TGFβ3) and Jagged2 genes and their association with nonsyndromic cleft lip with or without cleft palate (CL±P) patients.

    DESIGN: Cross-sectional study on nonsyndromic CL±P and noncleft patients.

    SETTING: Reconstructive clinic and outpatient dental clinic, Hospital Universiti Sains Malaysia.

    PATIENTS: Blood samples of 96 nonsyndromic CL±P and 96 noncleft subjects.

    MAIN OUTCOME MEASURE: Prevalence and association of mutations in TGFβ3 and Jagged2 genes with nonsyndromic CL±P.

    RESULTS: Most of the nonsyndromic CL±P patients (53.1%) had left unilateral CLP. There were slightly more females (56.6%) compared with males. The prevalence of the mutations in the TGFβ3 gene was 17.7% (95% confidence interval [CI]: 9.5, 24.5) and in the Jagged2 gene was 12.5% (95% CI: 5.5, 18.5), which was higher compared with the noncleft group. For the TGFβ3 gene, there was no mutation in the coding region in either of the groups. All variants were single nucleotide polymorphisms located within the intronic flanking region. Two variants were identified (g.15812T>G and g.15966A>G) in both nonsyndromic CL±P and noncleft patients. However, the association was not significant (P > .05). Three variants (g.19779C>T, g.19547G>A, and g.19712C>T) were identified in the Jagged2 gene among nonsyndromic CL±P and noncleft patients. Only g.19712C>T showed a significant association with nonsyndromic CL±P patients (P = .039).

    CONCLUSION: g.19712C>T might play a crucial role in the development of cleft lip and palate. To the best of our knowledge, this is the first report of the mutation found within intron 13 of the Jagged2 gene among nonsyndromic CL±P Malay patients.

    Study site:Reconstructive and outpatient dental clinic, Hospital Universiti Sains Malaysia (HUSM)
  3. Ghazali N, Rahman NA, Kannan TP, Jaafar S
    PMID: 25372553
    OBJECTIVE:   To determine the prevalence of mutations in transforming growth factor beta 3 (TGFβ3) and Jagged2 genes and their association with nonsyndromic cleft lip with or without cleft palate (CL±P) patients.

    DESIGN:   Cross-sectional study on nonsyndromic CL±P and noncleft patients.

    SETTING:   Reconstructive clinic and outpatient dental clinic, Hospital Universiti Sains, Malaysia.

    PATIENTS:   Blood samples of 96 nonsyndromic CL±P and 96 noncleft subjects.

    MAIN OUTCOME MEASURE:   Prevalence and association of mutations in TGFβ3 and Jagged2 genes with nonsyndromic CL±P.

    RESULTS:   Most of the nonsyndromic CL±P patients (53.1%) had left unilateral CLP. There were slightly more females (56.6%) compared with males. The prevalence of the mutations in the TGFβ3 gene was 17.7 (95% confidence interval [CI]: 9.5, 24.5) and in the Jagged2 gene was 12.5% (95% CI: 5.5, 18.5), which was higher compared with the noncleft group. For the TGFβ3 gene, there was no mutation in the coding region in either of the groups. All variants were single nucleotide polymorphisms located within the intronic flanking region. Two variants were identified (g.15812T>G and g.15966A>G) in both nonsyndromic CL±P and noncleft patients. However, the association was not significant (P > .05). Three variants (g.19779C>T, g.19547G>A, and g.19712C>T) were identified in the Jagged2 gene among nonsyndromic CL±P and noncleft patients. Only g.19712C>T showed a significant association with nonsyndromic CL±P patients (P = .039).

    CONCLUSION:   g.19712C>T might play a crucial role in the development of cleft lip and palate. To the best of our knowledge, this is the first report of the mutation found within intron 13 of the Jagged2 gene among nonsyndromic CL±P Malay patients.

  4. Ahmad R, Rahman NA, Hasan R, Yaacob NS, Ali SH
    Spec Care Dentist, 2020 Jan;40(1):62-70.
    PMID: 31774579 DOI: 10.1111/scd.12436
    AIMS: To investigate the oral health and nutritional status of children with cerebral palsy (CP).

    METHODS AND RESULTS: Oral health assessment included dental caries and dental plaque maturity scores (DPMS) while the nutritional assessment included children's height-for-age Z-score (HAZ), body mass index-for-age Z-score (BAZ), mid-upper-arm circumference (MUAC), nutrient intake, cariogenic food frequency (CFF) and daily sugar exposure (DSE). Ninety-three CP children were recruited. The prevalence of caries was 81.7% (95% CI: 72.7%-88.3%). The median (IQR) of the DMFT and dft scores were 0.5(4.0) and 3.0(8.0), respectively. Most of the participants had acid-producing plaque (90.3%), severely stunted (81.4%), and 45% were severely thin with acute malnutrition. Intakes of calcium, iron, zinc, vitamin A, vitamin D and total fat were below 77% of the Recommended Nutrient Intakes for Malaysian children (RNI 2017). Nine types of cariogenic foods/drinks were consumed moderately, and DSE indicated that 45% of the children were at moderate risk of dental caries.

    CONCLUSION: Untreated dental caries, severe stunting and thinness were prevalent, and cariogenic foods/drinks were consumed moderately suggesting a moderate risk of caries. Therefore, controlling cariogenic food intake is crucial, but monitoring daily nutrient intake is needed for the optimum growth of children with CP.

  5. Saini R, Ghani ZI, Rahman NA
    Singapore Dent J, 2006 Dec;28(1):34-9.
    PMID: 17378340
    Lack of awareness of signs and symptoms and risk factors of oral cancer can lead to late presentation of the disease that contributes to poor survival of patients who contract it. This study aims to determine the level of awareness regarding oral cancer in adult patients attending School of Dental Sciences, Universiti Sains Malaysia.
  6. Alahnomi RA, Zakaria Z, Yussof ZM, Althuwayb AA, Alhegazi A, Alsariera H, et al.
    Sensors (Basel), 2021 Mar 24;21(7).
    PMID: 33804904 DOI: 10.3390/s21072267
    Recent developments in the field of microwave planar sensors have led to a renewed interest in industrial, chemical, biological and medical applications that are capable of performing real-time and non-invasive measurement of material properties. Among the plausible advantages of microwave planar sensors is that they have a compact size, a low cost and the ease of fabrication and integration compared to prevailing sensors. However, some of their main drawbacks can be considered that restrict their usage and limit the range of applications such as their sensitivity and selectivity. The development of high-sensitivity microwave planar sensors is required for highly accurate complex permittivity measurements to monitor the small variations among different material samples. Therefore, the purpose of this paper is to review recent research on the development of microwave planar sensors and further challenges of their sensitivity and selectivity. Furthermore, the techniques of the complex permittivity extraction (real and imaginary parts) are discussed based on the different approaches of mathematical models. The outcomes of this review may facilitate improvements of and an alternative solution for the enhancement of microwave planar sensors' normalized sensitivity for material characterization, especially in biochemical and beverage industry applications.
  7. Aris NIF, Rahman NA, Wahid MH, Yahaya N, Abdul Keyon AS, Kamaruzaman S
    R Soc Open Sci, 2020 Mar;7(3):192050.
    PMID: 32269813 DOI: 10.1098/rsos.192050
    Superhydrophilic graphene oxide/electrospun cellulose nanofibre (GO/CNF) was synthesized, characterized and successfully used in a solid-phase membrane tip adsorption (SPMTA) as an adsorbent towards a simultaneous analysis of polar organophosphorus pesticides (OPPs) in several food and water samples. Separation, determination and quantification were achieved prior to ultra-performance liquid chromatography coupled with ultraviolet detector. The influence of several parameters such as sample pH, adsorption time, adsorbent dosage and initial concentration were investigated. SPMTA was linear in the range of 0.05 and 10 mg l-1 under the optimum adsorption conditions (sample pH 12; 5 mg of adsorbent dosage; 15 min of adsorption time) for methyl parathion, ethoprophos, sulfotepp and chlorpyrifos with excellent correlation coefficients of 0.994-0.999. Acceptable precision (RSDs) as achieved for intraday (0.06-5.44%, n = 3) and interday (0.17-7.76%, n = 3) analyses. Low limits of detection (0.01-0.05 mg l-1) and satisfactory consistency in adsorption (71.14-99.95%) were obtained for the spiked OPPs from Sungai Pahang, Tasik Cheras, cabbages and rice samples. The adsorption data were well followed the second-order kinetic model and fits the Freundlich adsorption model. The newly synthesized GO/CNF showed a great adsorbent potential for OPPs analysis.
  8. Ahmed T, Rahman NA, Alam MK
    Prog Orthod, 2019 Jul 08;20(1):26.
    PMID: 31281954 DOI: 10.1186/s40510-019-0277-x
    BACKGROUND: To introduce an orthodontic bracket debonding device capable of measuring debonding force clinically by a novel sensor mechanism MATERIALS AND METHOD: A prototype orthodontic debonding device was constructed utilizing a lift-off debonding instrument (LODI) and force-sensitive resistor (FSR). For data interpretation, the force sensor was equipped with a microcontroller and C++ programming software running on a computer. Ninety-nine (99) 0.022-in. conventional metallic brackets were bonded to premolar teeth in vitro by a single clinician applying the same adhesive and bonding technique. For validation, the mean debonding force measured by the prototype debonding device (n = 30) and the universal testing machine (n = 30) was compared. Both intra- and inter-examiner reliability tests were done by holding and operating the device in a standardized manner. Following debonding by the prototype device, the bracket failure pattern was evaluated (n = 30) by adhesive remnant index (ARI) under the stereomicroscope at × 30 magnification. Statistical analysis included independent samples t test for validation and intraclass correlation coefficient (ICC) with a 95% confidence interval for both intra- and inter-examiner reliability.

    RESULTS: Mean orthodontic bracket debonding force measured by the prototype device (9.36 ± 1.65 N) and the universal testing machine (10.43 ± 2.71 N) was not significantly different (p 

  9. Abdul Rahman NA, Mohd Desa MN, Masri SN, Taib NM, Sulaiman N, Hazman H, et al.
    Pol J Microbiol, 2023 Jun 01;72(2):103-115.
    PMID: 37314355 DOI: 10.33073/pjm-2023-023
    Streptococcus pneumoniae (pneumococcus) belongs to the Gram-positive cocci. This bacterium typically colonizes the nasopharyngeal region of healthy individuals. It has a distinct polysaccharide capsule - a virulence factor allowing the bacteria to elude the immune defense mechanisms. Consequently, it might trigger aggressive conditions like septicemia and meningitis in immunocompromised or older individuals. Moreover, children below five years of age are at risk of morbidity and mortality. Studies have found 101 S. pneumoniae capsular serotypes, of which several correlate with clinical and carriage isolates with distinct disease aggressiveness. Introducing pneumococcal conjugate vaccines (PCV) targets the most common disease-associated serotypes. Nevertheless, vaccine selection pressure leads to replacing the formerly dominant vaccine serotypes (VTs) by non-vaccine types (NVTs). Therefore, serotyping must be conducted for epidemiological surveillance and vaccine assessment. Serotyping can be performed using numerous techniques, either by the conventional antisera-based (Quellung and latex agglutination) or molecular-based approaches (sequetyping, multiplex PCR, real-time PCR, and PCR-RFLP). A cost-effective and practical approach must be used to enhance serotyping accuracy to monitor the prevalence of VTs and NVTs. Therefore, dependable pneumococcal serotyping techniques are essential to precisely monitor virulent lineages, NVT emergence, and genetic associations of isolates. This review discusses the principles, associated benefits, and drawbacks of the respective available conventional and molecular approaches, and potentially the whole genome sequencing (WGS) to be directed for future exploration.
  10. Xu Y, Yu S, Zou JW, Hu G, Rahman NA, Othman RB, et al.
    PLoS One, 2015;10(11):e0144171.
    PMID: 26636321 DOI: 10.1371/journal.pone.0144171
    The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew's correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.
  11. Rothan HA, Bahrani H, Mohamed Z, Teoh TC, Shankar EM, Rahman NA, et al.
    PLoS One, 2015;10(5):e0126360.
    PMID: 25970853 DOI: 10.1371/journal.pone.0126360
    Lack of vaccine and effective antiviral drugs against chikungunya virus (CHIKV) outbreaks have led to significant impact on health care in the developing world. Here, we evaluated the antiviral effects of tetracycline (TETRA) derivatives and other common antiviral agents against CHIKV. Our results showed that within the TETRA derivatives group, Doxycycline (DOXY) exhibited the highest inhibitory effect against CHIKV replication in Vero cells. On the other hand, in the antiviral group Ribavirin (RIBA) showed higher inhibitory effects against CHIKV replication compared to Aciclovir (ACIC). Interestingly, RIBA inhibitory effects were also higher than all but DOXY within the TETRA derivatives group. Docking studies of DOXY to viral cysteine protease and E2 envelope protein showed non-competitive interaction with docking energy of -6.6±0.1 and -6.4±0.1 kcal/mol respectively. The 50% effective concentration (EC50) of DOXY and RIBA was determined to be 10.95±2.12 μM and 15.51±1.62 μM respectively, while DOXY+RIBA (1:1 combination) showed an EC50 of 4.52±1.42 μM. When compared, DOXY showed higher inhibition of viral infectivity and entry than RIBA. In contrast however, RIBA showed higher inhibition against viral replication in target cells compared to DOXY. Assays using mice as animal models revealed that DOXY+RIBA effectively inhibited CHIKV replication and attenuated its infectivity in vivo. Further experimental and clinical studies are warranted to investigate their potential application for clinical intervention of CHIKV disease.
  12. Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA
    PLoS One, 2020;15(7):e0232860.
    PMID: 32645001 DOI: 10.1371/journal.pone.0232860
    Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
  13. Rahman NA, Abu Hanifah S, Mobarak NN, Su'ait MS, Ahmad A, Shyuan LK, et al.
    PLoS One, 2019;14(2):e0212066.
    PMID: 30768616 DOI: 10.1371/journal.pone.0212066
    For the past decade, much attention was focused on polysaccharide natural resources for various purposes. Throughout the works, several efforts were reported to prepare new function of chitosan by chemical modifications for renewable energy, such as fuel cell application. This paper focuses on synthesis of the chitosan derivative, namely, O-nitrochitosan which was synthesized at various compositions of sodium hydroxide and reacted with nitric acid fume. Its potential as biopolymer electrolytes was studied. The substitution of nitro group was analyzed by using Attenuated Total Reflectance Fourier Transform Infra-Red (ATR-FTIR) analysis, Nuclear Magnetic Resonance (NMR) and Elemental Analysis (CHNS). The structure was characterized by X-ray Diffraction (XRD) and its thermal properties were examined by using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Whereas, the ionic conductivity of the samples was analyzed by electrochemical impedance spectroscopy (EIS). From the IR spectrum results, the nitro group peaks of O-nitrochitosan, positioned at 1646 and 1355 cm-1, were clearly seen for all pH media. At pH 6, O-nitrochitosan exhibited the highest degree of substitution at 0.74 when analyzed by CHNS analysis and NMR further proved that C-6 of glucosamine ring was shifted to the higher field. However, the thermal stability and glass transition temperatures were decreased with acidic condition. The highest ionic conductivity of O-nitrochitosan was obtained at ~10-6 cm-1. Overall, the electrochemical property of new O-nitrochitosan showed a good improvement as compared to chitosan and other chitosan derivatives. Hence, O-nitrochitosan is a promising biopolymer electrolyte and has the potential to be applied in electrochemical devices.
  14. Hameed MM, Razali SFM, Mohtar WHMW, Rahman NA, Yaseen ZM
    PLoS One, 2023;18(10):e0290891.
    PMID: 37906556 DOI: 10.1371/journal.pone.0290891
    The Great Lakes are critical freshwater sources, supporting millions of people, agriculture, and ecosystems. However, climate change has worsened droughts, leading to significant economic and social consequences. Accurate multi-month drought forecasting is, therefore, essential for effective water management and mitigating these impacts. This study introduces the Multivariate Standardized Lake Water Level Index (MSWI), a modified drought index that utilizes water level data collected from 1920 to 2020. Four hybrid models are developed: Support Vector Regression with Beluga whale optimization (SVR-BWO), Random Forest with Beluga whale optimization (RF-BWO), Extreme Learning Machine with Beluga whale optimization (ELM-BWO), and Regularized ELM with Beluga whale optimization (RELM-BWO). The models forecast droughts up to six months ahead for Lake Superior and Lake Michigan-Huron. The best-performing model is then selected to forecast droughts for the remaining three lakes, which have not experienced severe droughts in the past 50 years. The results show that incorporating the BWO improves the accuracy of all classical models, particularly in forecasting drought turning and critical points. Among the hybrid models, the RELM-BWO model achieves the highest level of accuracy, surpassing both classical and hybrid models by a significant margin (7.21 to 76.74%). Furthermore, Monte-Carlo simulation is employed to analyze uncertainties and ensure the reliability of the forecasts. Accordingly, the RELM-BWO model reliably forecasts droughts for all lakes, with a lead time ranging from 2 to 6 months. The study's findings offer valuable insights for policymakers, water managers, and other stakeholders to better prepare drought mitigation strategies.
  15. Lu J, Abd Rahman NA, Wyon M, Shaharudin S
    PLoS One, 2024;19(4):e0301236.
    PMID: 38640093 DOI: 10.1371/journal.pone.0301236
    BACKGROUND: Fundamental physical functions such as postural control and balance are vital in preserving everyday life, affecting an individual's quality of life. Dance is a physical activity that offers health advantages across various life stages. Nevertheless, the effects of dance interventions on physical function, postural control, and quality of life among older adults have remained underexplored. The review aimed to examine the strength of evidence for dance interventions on physical function and quality of life among middle-aged and older adults.

    METHODS: A systematic review was conducted across four databases (PubMed, Cochrane Library, Web of Science, and Medline), focusing on studies involving more than four weeks of dance interventions. MeSH terms [dance or dance intervention or dance rehabilitation or dance movement] and [motor function or functional capacity or postural control or functional mobility or mobility or postural balance or balance or flexibility or gait] and [well-being or quality of life or life satisfaction] were utilized in the search. This review was registered in the PROSPERO database (CRD42023422857). Included studies were assessed using the Cochrane Risk of Bias.

    RESULTS: The search revealed 885 studies, and 16 met the inclusion criteria. The effects of various dance genres on physical functions and quality of life were compared. Most studies showed that dance intervention improved physical function, balance, postural control and quality of life. Dance intervention showed a high level of adherence compared to physiotherapy, self-care, conventional therapy, and aerobic and resistance exercise.

    CONCLUSION: In terms of improving physical function and quality of life, structured dance is a safe and relatively effective alternative to exercise. Note the effect of movement selection and intensity in the dance interventions. Dance with music may increase participants' interest, encouraging more physical activity among middle-aged and older adults.

  16. Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI
    Planta, 2024 Mar 29;259(5):103.
    PMID: 38551683 DOI: 10.1007/s00425-024-04378-2
    Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.
  17. Abd Rahman NA, Li S, Schmid S, Shaharudin S
    Phys Ther Sport, 2023 Jan;59:60-72.
    PMID: 36516512 DOI: 10.1016/j.ptsp.2022.11.011
    Low back pain (LBP) can result in increased direct medical and non-medical costs to patients, employers, and health care providers. This systematic review aimed to provide a better understanding of the biomechanical factors associated with chronic non-specific LBP in adults. SCOPUS, ScienceDirect, MEDLINE, and Web of Science databases were searched. In total, 26 studies were included and significant differences were noted between healthy controls and LBP patients in various motion. Biomechanical factors among adults with non-specific LBP were altered and differed as compared to healthy controls in various motion might be to compensate the pain during those motions. This review highlighted the biomechanical differences across those with non-specific LBP and healthy adults. Both groups showed a similar level of pain during functional tasks but LBP patients suffered from a moderate level of disability. Future studies should not rely on questionnaire-based pain scale only. The biomechanical factors summarized in this review can be used to diagnose non-specific LBP accurately, and as modifiable targets for exercise-based intervention.
  18. Pyle JA, Warwick NJ, Harris NR, Abas MR, Archibald AT, Ashfold MJ, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3210-24.
    PMID: 22006963 DOI: 10.1098/rstb.2011.0060
    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
  19. Yaacob N, Mohamad Ali MS, Salleh AB, Abdul Rahman NA
    PeerJ, 2016;4:e1751.
    PMID: 26989608 DOI: 10.7717/peerj.1751
    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2 expression, showing the highest expression when glucose was depleted and ethanol-acetic acid was increased. Meanwhile, S. cerevisiae showed a constitutive ADH2 expression throughout the fermentation process. Discussion. ADH2 expression in L. fermentati may be subjected to changes in the presence of non-fermentative carbon source. The nucleotide sequence showed that ADH2 transcription could be influenced by other transcription genes of glycolysis oriented due to the lack of specific activation sites for Adr1. Our study suggests that if Adr1 is not capable of promoting LfeADH2 activation, the transcription can be controlled by Rap1 and Sp1 due to their inherent roles. Therefore in future, it is interesting to observe ADH2 gene being highly regulated by these potential transcription factors and functioned as a promoter for yeast under high volume of ethanol and organic acids.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links