Displaying publications 21 - 40 of 54 in total

Abstract:
Sort:
  1. Norlia M, Nor-Khaizura MAR, Selamat J, Abu Bakar F, Radu S, Chin CK
    PMID: 29912639 DOI: 10.1080/19440049.2018.1488276
    The peanut supply chain in Malaysia is dominated by three main stakeholders (importers, manufacturers, retailers). The present study aimed to determine the levels and critical points of aflatoxin and fungal contamination in peanuts along the supply chain. Specifically, two types of raw peanuts and six types of peanut-based products were collected (N = 178). Samples were analysed for aflatoxins by using high-performance liquid chromatography. Results revealed that the aflatoxin contamination was significantly higher (P ≤ 0.05) in raw peanuts and peanut-based products from the retailers. However, there was no significant difference (P ≥ 0.05) in fungal contamination for both types of peanuts except for the total fungal count in raw peanuts from the retailers. Furthermore, raw peanut kernels from the retailers were the most contaminated ones ranged from
  2. Abbasi Pirouz A, Abedi Karjiban R, Abu Bakar F, Selamat J
    Toxins (Basel), 2018 09 06;10(9).
    PMID: 30200553 DOI: 10.3390/toxins10090361
    A novel magnetic graphene oxide modified with chitosan (MGO-CTS) was synthesised as an adsorbent aimed to examine the simultaneous removal of mycotoxins. The composite was characterised by various procedures, namely Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and a scanning electron microscope (SEM). The adsorption evaluation was considered via pH effects, initial mycotoxin concentration, adsorption time and temperature. Adsorption isotherm data and kinetics experiments were acquired at the optimum pH 5 fit Freundlich isotherm as well as pseudo-second-order kinetic models. The thermodynamic results indicated that the adsorption of the mycotoxins was spontaneous, endothermic and favourable.
  3. Yazid SNE, Thanggavelu H, Mahror N, Selamat J, Samsudin NIP
    Int J Food Microbiol, 2018 Oct 03;282:57-65.
    PMID: 29913332 DOI: 10.1016/j.ijfoodmicro.2018.06.007
    In studying the ecophysiology of fungal phytopathogens, several stages are involved (in vitro, greenhouse, in planta). Most in vitro studies extensively utilise the general growth media such as Potato Dextrose Agar and Malt Extract Agar. Although the crop components in these media serve as excellent carbon sources and yield luxuriant growth, they are not naturally contaminated with Aspergillus flavus and thus might result in under- or overestimation of its actual toxigenic potentials. Empirical data on the formulation of semi-synthetic growth medium mimicking the natural crop commonly contaminated by A. flavus for the ecophysiological studies in vitro are scarce. The present work was aimed at investigating the ecophysiology of A. flavus on commercial growth media (PDA, MEA); formulating maize- and peanut-based semi-synthetic growth media using two methods of raw material preparation (milling, hot water extraction) at different concentrations (1, 3, 5, 7, 9% w/v), and comparing the ecophysiological parameters between commercial and formulated growth media. Growth rates were obtained by computing the hyphal expansion data into y = mx + c equation. AFB1 was quantified using high performance liquid chromatography with fluorescence detector. Formulated media were found to yield significantly higher growth rates when compared to commercial media. However, commercial media yielded significantly higher AFB1 when compared to all formulated media. Between the two formulations, milling yielded significantly higher growth rates and AFB1 when compared to hot water extraction. Although in vitro data cannot directly extrapolate in planta performance, results obtained in the present work can be used to gauge the actual toxigenic potential of A. flavus in maize and peanut agro-ecosystems.
  4. Khan MJ, Shameli K, Sazili AQ, Selamat J, Kumari S
    Molecules, 2019 Feb 16;24(4).
    PMID: 30781541 DOI: 10.3390/molecules24040719
    Green synthesis of silver nanoparticles is desirable practice. It is not only the required technique for industrial and biomedical purposes but also a promising research area. The aim of this study was to synthesize green curcumin silver nanoparticles (C-Ag NPs). The synthesis of C-Ag NPs was achieved by reduction of the silver nitrate (AgNO₃) in an alkaline medium. The characterizations of the prepared samples were conducted by ultraviolet visible (UV-vis) spectroscopy, powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and zeta potential (ZP) analyses. The formation of C-Ag NPs was evaluated by the dark color of the colloidal solutions and UV-vis spectra, with 445 nm as the maximum. The size of the crystalline nanoparticles, recorded as 12.6 ± 3.8nm, was confirmed by HRTEM, while the face-centered cubic (fcc) crystallographic structure was confirmed by PXRD and SAED. It is assumed that green synthesized curcumin silver nanoparticles (C-Ag NPs) can be efficiently utilized as a strong antimicrobial substance for food and meat preservation due to their homogeneous nature and small size.
  5. Khan MJ, Kumari S, Shameli K, Selamat J, Sazili AQ
    Materials (Basel), 2019 Jul 26;12(15).
    PMID: 31357398 DOI: 10.3390/ma12152382
    Nanoparticles (NPs) are, frequently, being utilized in multi-dimensional enterprises. Silver nanoparticles (AgNPs) have attracted researchers in the last decade due to their exceptional efficacy at very low volume and stability at higher temperatures. Due to certain limitations of the chemical method of synthesis, AgNPs can be obtained by physical methods including sun rays, microwaves and ultraviolet (UV) radiation. In the current study, the synthesis of pullulan mediated silver nanoparticles (P-AgNPs) was achieved through ultraviolet (UV) irradiation, with a wavelength of 365 nm, for 96 h. P-AgNPs were formed after 24 h of UV-irradiation time and expressed spectra maxima as 415 nm, after 96 h, in UV-vis spectroscopy. The crystallographic structure was "face centered cubic (fcc)" as confirmed by powder X-ray diffraction (PXRD). Furthermore, high resolution transmission electron microscopy (HRTEM) proved that P-AgNPs were covered with a thin layer of pullulan, with a mean crystalline size of 6.02 ± 2.37. The average lattice fringe spacing of nanoparticles was confirmed as 0.235 nm with quasi-spherical characteristics, by selected area electron diffraction (SAED) analysis. These green synthesized P-AgNPs can be utilized efficiently, as an active food and meat preservative, when incorporated into the edible films.
  6. Azri FA, Selamat J, Sukor R, Yusof NA, Ahmad Raston NH, Nordin N, et al.
    Molecules, 2019 Aug 29;24(17).
    PMID: 31470528 DOI: 10.3390/molecules24173141
    This work presents a simple green synthesis of gold nanoparticles (AuNPs) by using an aqueous extract of Etlingera elatior (torch ginger). The metabolites present in E. elatior, including sugars, proteins, polyphenols, and flavonoids, were known to play important roles in reducing metal ions and supporting the subsequent stability of nanoparticles. The present work aimed to investigate the ability of the E. elatior extract to synthesise AuNPs via the reduction of gold (III) chloride hydrate and characterise the properties of the nanoparticles produced. The antioxidant properties of the E. elatior extract were evaluated by analysing the total phenolic and total flavonoid contents. To ascertain the formation of AuNPs, the synthesised particles were characterised using the ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) microscopy, and dynamic light scattering (DLS) measurement. The properties of the green synthesised AuNPs were shown to be comparable to the AuNPs produced using a conventional reducing agent, sodium citrate. The UV-Vis measured the surface plasmon resonance of the AuNPs, and a band centered at 529 nm was obtained. The FTIR results proved that the extract contained the O-H functional group that is responsible for capping the nanoparticles. The HRTEM images showed that the green synthesized AuNPs were of various shapes and the average of the nanoparticles' hydrodynamic diameter was 31.5 ± 0.5 nm. Meanwhile, the zeta potential of -32.0 ± 0.4 mV indicates the high stability and negative charge of the AuNPs. We further successfully demonstrated that using the green synthesised AuNPs as the nanocomposite to modify the working surface of screen-printed carbon electrode (SPCE/Cs/AuNPs) enhanced the rate of electron transfer and provided a sensitive platform for the detection of Cu(II) ions.
  7. Ishak AA, Selamat J, Sulaiman R, Sukor R, Abdulmalek E, Jambari NN
    Molecules, 2019 Oct 24;24(21).
    PMID: 31652883 DOI: 10.3390/molecules24213828
    The formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was investigated using a kinetic study approach as described by first-order, Arrhenius, and Eyring equations. Chemical model systems with different amino acid precursors (proline, phenylalanine, and glycine) were examined at different times (4, 8, 12, and 16 min) and temperatures (150, 180, 210, 240, and 270 °C). PhIP was detected using high-performance liquid chromatography equipped with fluorescence detector (HPLC-FLD). The good fit in first-order suggested that PhIP formation was influenced by the types of amino acids and PhIP concentration significantly increased with time and temperature (up to 240 °C). PhIP was detected in proline and phenylalanine model systems but not in the glycine model system. The phenylalanine model system demonstrated low activation energy (Ea) of 95.36 kJ/mol that resulted in a high rate of PhIP formation (great amount of PhIP formed). Based on the ∆S‡ values both proline and phenylalanine demonstrated bimolecular rate-limiting steps for PhIP formation. Altogether these kinetic results could provide valuable information in predicting the PhIP formation pathway.
  8. Shamsudin S, Selamat J, Sanny M, A R SB, Jambari NN, Khatib A
    Molecules, 2019 Oct 29;24(21).
    PMID: 31671885 DOI: 10.3390/molecules24213898
    Stingless bee honey produced by Heterotrigona itama from different botanical origins was characterised and discriminated. Three types of stingless bee honey collected from acacia, gelam, and starfruit nectars were analyzed and compared with Apis mellifera honey. The results showed that stingless bee honey samples from the three different botanical origins were significantly different in terms of their moisture content, pH, free acidity, total soluble solids, colour characteristics, sugar content, amino acid content and antioxidant properties. Stingless bee honey was significantly different from Apis mellifera honey in terms of physicochemical and antioxidant properties. The amino acid content was further used in the chemometrics analysis to evaluate the role of amino acid in discriminating honey according to botanical origin. Partial least squares-discriminant analysis (PLS-DA) revealed that the stingless bee honey was completely distinguishable from Apis mellifera honey. Notably, a clear distinction between the stingless bee honey types was also observed. The specific amino acids involved in the distinction of honey were cysteine for acacia and gelam, phenylalanine and 3-hydroxyproline for starfruit, and proline for Apis mellifera honey. The results showed that all honey samples were successfully classified based on amino acid content.
  9. Zulkafflee NS, Mohd Redzuan NA, Hanafi Z, Selamat J, Ismail MR, Praveena SM, et al.
    PMID: 31795132 DOI: 10.3390/ijerph16234769
    Rice ingestion is one of the major pathways for heavy metal bioaccumulation in human. This study aimed to measure the heavy metal content of paddy soils and its bioavailability in paddy grain in order to assess the health risk. In total, 10 rice samples (50 g each) of paddy plants were harvested from the Selangor and Terengganu areas of Malaysia to assess the bioavailability of heavy metal (As, Cd, Cu, Cr, and Pb) using the in vitro digestion model of Rijksinstituut voor Volksgezondheid en Milieu. The bioavailability of heavy metal concentrations in rice samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings showed the bioavailability of heavy metal concentrations was decreased in the order Cr > Cu > Pb > As > Cd. Chromium was found to be the most abundant bioavailable heavy metal in cooked rice, which was the result of its high content in paddy soil. Hazard Quotient values for the bioavailability of the heavy metal studied were less than one indicating no non-carcinogenic health risks for adults and children. Meanwhile, the total Lifetime Cancer Risk exceeded the acceptable value showing a potential of carcinogenic health risk for both adults and children. The application of in vitro digestion model in assessing bioavailability of heavy metal produces a more realistic estimation of human health risks exposure. However, a regular monitoring of pollution in Selangor and Terengganu areas is crucial since the exposure of heavy metals through rice consumption poses the potential non-carcinogenic and carcinogenic health risk to the local residents.
  10. Fathordoobady, F., Manap, M.Y., Selamat, J., Singh, A.P.
    MyJurnal
    In the present work, supercritical fluid extraction (SFE) with CO2 as solvent and EtOH/water (v/v) as co-solvent was optimised by applying 23 factorial experimental design for the extraction of betacyanins from red pitaya fruit (Hylocereus polyrhizus) peel. Three independent variables of pressure (20-30 MPa), temperature (40-60°C) and co-solvent concentration (10-20%) were chosen for response variables. With the 2 mL/min flow rate of CO2, the dynamic time of extraction was found to be 90 min. The linear effects of main factors and interactions were evaluated. The calculated response surface model for the pressure/temperature was found to be significant for all the dependent variables. At optimal condition of SFE, the response variables were assessed as maximum extraction yield of 4.09 ± 0.69%, total betacyanins content of 25.49 ± 1.54 mg/100 mL, redness (a*) of 58.18 ± 0.82, and IC50 (antioxidant activity) of 1.34 ± 0.12 mg/mL for the experimental peel extracts. The optimal levels of independent variables were validated for the experimental responses as predicted by the mathematical model. The reliability of this method was confirmed as there was no significant difference between experimental and predicted values. The HPLC-MS profile of betacyanins extract comprised of both acylated and non-acylated betacyanins constituents.
  11. Agus BAP, Hussain N, Selamat J
    Food Chem, 2020 Jan 15;303:125398.
    PMID: 31470272 DOI: 10.1016/j.foodchem.2019.125398
    Roasting is an important process in cocoa production which may lead to formation of non-desirable compounds such as polycyclic aromatic hydrocarbons (PAHs). Therefore, PAH4 (sum of four different polycyclic aromatic hydrocarbons; benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in roasted cocoa beans was determined using a modified method (combination of QuEChERS and DLLME), and quantified by HPLC-FLD. The modified method was validated and met the performance criteria required by the EU Regulation (No. 836/2011). Results show a significant (p 
  12. Mohsin AZ, Sukor R, Selamat J, Meor Hussin AS, Ismail IH, Jambari NN, et al.
    Molecules, 2020 Jun 05;25(11).
    PMID: 32516919 DOI: 10.3390/molecules25112622
    The chemical, technological and allergy properties of goat's milk are significantly affected by the level of αs1-casein. Detection and quantification of αs1-casein requires high-specificity methods to overcome high-sequence similarity between this protein and others in the casein family. Unavailability of antibodies with high affinity and specificity towards goat αs1-casein hinders the development of immuno-based analytical methods such as enzyme-linked immunosorbent assay (ELISA) and biosensors. Here, we report the generation of polyclonal antibodies (or immunoglobulins, IgGs) raised towards goat αs1-casein N- (Nter) and C-terminal (Cter) peptide sequences. The Nter and Cter peptides of goat αs1-casein were immunized in rabbits for the generation of antisera, which were purified using protein G affinity chromatography. The binding affinity of the antisera and purified IgGs were tested and compared using indirect ELISA, where peptide-BSA conjugates and goat αs1-casein were used as the coating antigens. The Nter antiserum displayed higher titer than Cter antiserum, at 1/64,000 and 1/32,000 dilutions, respectively. The purification step further yielded 0.5 mg/mL of purified IgGs from 3 mL of antisera. The purified Nter IgG showed a significantly (p < 0.05) higher binding affinity towards peptide-BSA and goat αs1-casein, with lower Kd value at 5.063 × 10-3 μM compared to 9.046 × 10-3 μM for the Cter IgG. A cross-reactivity test showed that there was no binding in neither Nter nor Cter IgGs towards protein extracts from the milk of cow, buffalo, horse and camel. High-quality antibodies generated will allow further development of immuno-based analytical methods and future in vitro studies to be conducted on goat αs1-casein.
  13. Peter Mshelia L, Selamat J, Iskandar Putra Samsudin N, Rafii MY, Abdul Mutalib NA, Nordin N, et al.
    Toxins (Basel), 2020 07 28;12(8).
    PMID: 32731333 DOI: 10.3390/toxins12080478
    Climate change is primarily manifested by elevated temperature and carbon dioxide (CO2) levels and is projected to provide suitable cultivation grounds for pests and pathogens in the otherwise unsuitable regions. The impacts of climate change have been predicted in many parts of the world, which could threaten global food safety and food security. The aim of the present work was therefore to examine the interacting effects of water activity (aw) (0.92, 0.95, 0.98 aw), CO2 (400, 800, 1200 ppm) and temperature (30, 35 °C and 30, 33 °C for Fusarium verticillioides and F. graminearum, respectively) on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum isolated from maize. To determine fungal growth, the colony diameters were measured on days 1, 3, 5, and 7. The mycotoxins produced were quantified using a quadrupole-time-of-flight mass spectrometer (QTOF-MS) combined with ultra-high-performance liquid chromatography (UHPLC) system. For F. verticillioides, the optimum conditions for growth of fumonisin B1 (FB1), and fumonisin B2 (FB2) were 30 °C + 0.98 aw + 400 ppm CO2. These conditions were also optimum for F. graminearum growth, and zearalenone (ZEA) and deoxynivalenol (DON) production. Since 30 °C and 400 ppm CO2 were the baseline treatments, it was hence concluded that the elevated temperature and CO2 levels tested did not seem to significantly impact fungal growth and mycotoxin production of acclimatised Fusarium isolates. To the best of our knowledge thus far, the present work described for the first time the effects of simulated climate change conditions on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum.
  14. Iqbal SZ, Rehman B, Selamat J, Akram N, Ahmad MN, Sanny M, et al.
    J Food Prot, 2020 Aug 01;83(8):1284-1288.
    PMID: 32678886 DOI: 10.4315/0362-028X.JFP-19-361
    ABSTRACT: A total of 133 samples of whole wheat and barley grains and wheat and barley flour collected from retail markets in the main cities of Punjab, Pakistan, were analyzed for the mycotoxin fumonisin B1 (FB1) using reverse phase high-performance liquid chromatography with fluorescence detection. Of these samples, 120 (90%) were positive for FB1, and 75 (63%) of the 120 positive samples had FB1 concentrations higher than the European Union maximum (200 μg/kg). The limit of detection was 4 μg/kg. The highest mean (±SD) concentration of FB1 was found in whole wheat samples, 980.5 ± 211.4 μg/kg. The calculated dietary intakes of FB1 from wheat and barley flours were 4,456 and 503.7 ng/g of body weight per day, respectively.
  15. Shamsudin S, Selamat J, Sanny M, Jambari NN, Sukor R, Praveena SM, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858787 DOI: 10.3390/molecules25173874
    Heterocyclic amines (HCAs) are carcinogenic food toxicants formed in cooked meats, which may increase the risk of cancer development in humans. Therefore, in this study, the effect of stingless bee honey from different botanical origins on the formation of HCAs in grilled beef satay was investigated. HCAs concentration in grilled beef satay was determined by using high performance liquid chromatography (HPLC). In total, six of the most toxigenic HCAs representing aminoimidazo-azaarenes (AIAs) (MeIQx, 4,8-DiMeIQx, and PhIP) and amino carbolines (norharman, harman, and AαC) groups were identified in all the beef samples investigated. A significant reduction in HCAs was observed in grilled beef marinated in honey as compared to beef samples marinated in table sugar (control), in which the reduction of 95.14%, 88.45%, 85.65%, and 57.22% was observed in gelam, starfruit, acacia, and Apis honey marinades, respectively. According to the partial least squares regression (PLS) model, the inhibition of HCAs in grilled beef was shown to be significantly correlated to the antioxidant activity (IC50) of the honey samples. Therefore, the results of this study revealed that the addition of stingless bee honey could play an important role in reducing HCAs in grilled beef.
  16. Mohsin AZ, Sukor R, Selamat J, Meor Hussin AS, Ismail IH, Jambari NN, et al.
    PMID: 32971369 DOI: 10.1016/j.jchromb.2020.122380
    The main challenges in the purification of αS2-casein are due to the low quantity in milk and high homology with other casein subunits, i.e., αS1-casein, β-casein, and κ-casein. To overcome these challenges, the aim of this study was to develop a two-step purification to isolate native αS2-casein in goat milk from five different breeds; British Alpine, Jamnapari, Saanen, Shami, and Toggenburg. The first step of the purification was executed by anion-exchange chromatography under optimal elution conditions followed by size exclusion chromatography. Tryptic peptides from in-gel digestion of purified αS2-casein were sequenced and analyzed by LC-ESI-MS/MS. From 1.05 g of whole casein, the highest yield of αS2-casein (6.7 mg/mL) was obtained from Jamnapari and the lowest yield (2.2 mg/mL) was from Saanen. A single band of pure αS2-casein was observed on SDS-PAGE for all breeds. The αS2-casein showed coverage percentage of amino acid sequence from 76.68 to 92.83%. The two-step purification process developed herein was successfully applied for isolating native αS2-casein from goat milk with high purity, which will allow for future in vitro studies to be conducted on this protein.
  17. Nematbakhsh S, Pei Pei C, Selamat J, Nordin N, Idris LH, Abdull Razis AF
    Genes (Basel), 2021 03 13;12(3).
    PMID: 33805667 DOI: 10.3390/genes12030414
    In the poultry industry, excessive fat deposition is considered an undesirable factor, affecting feed efficiency, meat production cost, meat quality, and consumer's health. Efforts to reduce fat deposition in economically important animals, such as chicken, can be made through different strategies; including genetic selection, feeding strategies, housing, and environmental strategies, as well as hormone supplementation. Recent investigations at the molecular level have revealed the significant role of the transcriptional and post-transcriptional regulatory networks and their interaction on modulating fat metabolism in chickens. At the transcriptional level, different transcription factors are known to regulate the expression of lipogenic and adipogenic genes through various signaling pathways, affecting chicken fat metabolism. Alternatively, at the post-transcriptional level, the regulatory mechanism of microRNAs (miRNAs) on lipid metabolism and deposition has added a promising dimension to understand the structural and functional regulatory mechanism of lipid metabolism in chicken. Therefore, this review focuses on the progress made in unraveling the molecular function of genes, transcription factors, and more notably significant miRNAs responsible for regulating adipogenesis, lipogenesis, and fat deposition in chicken. Moreover, a better understanding of the molecular regulation of lipid metabolism will give researchers novel insights to use functional molecular markers, such as miRNAs, for selection against excessive fat deposition to improve chicken production efficiency and meat quality.
  18. Salim SA, Sukor R, Ismail MN, Selamat J
    Toxins (Basel), 2021 04 15;13(4).
    PMID: 33920815 DOI: 10.3390/toxins13040280
    Rice bran, a by-product of the rice milling process, has emerged as a functional food and being used in formulation of healthy food and drinks. However, rice bran is often contaminated with numerous mycotoxins. In this study, a method to simultaneous detection of aflatoxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), deoxynivalenol (DON), fumonisins (FB1 and FB2), sterigmatocystin (STG), T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone (ZEA) in rice bran was developed, optimized and validated using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In DLLME, using a solvent mixture of methanol/water (80:20, v/v) as the dispersive solvent and chloroform as the extraction solvent with the addition of 5% salt improved the extraction recoveries (63-120%). The developed method was further optimized using the response surface methodology (RSM) combined with Box-Behnken Design (BBD). Under the optimized experimental conditions, good linearity was obtained with a correlation coefficient (r2) ≥ 0.990 and a limit of detection (LOD) between 0.5 to 50 ng g-1. The recoveries ranged from 70.2% to 99.4% with an RSD below 1.28%. The proposed method was successfully applied to analyze multi-mycotoxin in 24 rice bran samples.
  19. Zakaria Z, Zulkafflee NS, Mohd Redzuan NA, Selamat J, Ismail MR, Praveena SM, et al.
    Plants (Basel), 2021 May 26;10(6).
    PMID: 34073642 DOI: 10.3390/plants10061070
    Rice is a worldwide staple food and heavy metal contamination is often reported in rice production. Heavy metal can originate from natural sources or be present through anthropogenic contamination. Therefore, this review summarizes the current status of heavy metal contamination in paddy soil and plants, highlighting the mechanism of uptake, bioaccumulation, and health risk assessment. A scoping search employing Google Scholar, Science Direct, Research Gate, Scopus, and Wiley Online was carried out to build up the review using the following keywords: heavy metals, absorption, translocation, accumulation, uptake, biotransformation, rice, and human risk with no restrictions being placed on the year of study. Cadmium (Cd), arsenic (As), and lead (Pb) have been identified as the most prevalent metals in rice cultivation. Mining and irrigation activities are primary sources, but chemical fertilizer and pesticide usage also contribute to heavy metal contamination of paddy soil worldwide. Further to their adverse effect on the paddy ecosystem by reducing the soil fertility and grain yield, heavy metal contamination represents a risk to human health. An in-depth discussion is further offered on health risk assessments by quantitative measurement to identify potential risk towards heavy metal exposure via rice consumption, which consisted of in vitro digestion models through a vital ingestion portion of rice.
  20. Azri FA, Selamat J, Sukor R, Yusof NA, Raston NHA, Eissa S, et al.
    Anal Bioanal Chem, 2021 Jun;413(15):3861-3872.
    PMID: 34021369 DOI: 10.1007/s00216-021-03336-1
    Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target. The originally selected zearalenone (ZEA) aptamer was 80-mer in length and shown to bind the target with a high affinity (Kd = 41 ± 5 nM). Herein, computational docking simulation was performed with 15 truncated variants to determine the predicted binding energy and responsible binding site of the aptamer-analyte complex. The results revealed that 5 truncated variants had binding energy lower than - 7.0 kcal/mol. Circular dichroism analysis was performed on the shortlisted aptamer and the conformational change of aptamers was observed with the presence of an analyte. Aptamer Z3IN (29-mer) was chosen as the most enhanced affinity for its target with a dissociation constant of 11.77 ± 1.44 nM. The aptamer was further applied in the electrochemical aptasensor of ZEA based on an indirect competitive format. The results demonstrated that the truncated aptamer leads to an enhancement of the sensitivity of the biosensor.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links