Displaying publications 21 - 40 of 52 in total

Abstract:
Sort:
  1. Ban KC, Singh H, Krishnan R, Seow HF
    Cancer Lett, 2003 Sep 25;199(2):201-8.
    PMID: 12969793
    The aim of this study is to investigate the potential correlation between the expression of phosphorylated glycogen synthase kinase-3beta (phospho-GSK-3beta) and beta-catenin, and the mutations of beta-catenin gene at the consensus GSK-3beta phosphorylation site. The reason for this approach is to gain a better understanding of the molecular mechanisms of hepatocarcinogenesis in Malaysia. The expression of phospho-GSK-3beta and beta-catenin by immunohistochemistry and the mutations of beta-catenin were studied in 23 hepatocellular carcinoma (HCC) and surrounding tissues. Overexpression of phospho-GSK-3beta and beta-catenin was found in 12/23 (52.2%) and 13/23 (56.5%) in HCC tissues, 6/23 (26.1%) and 9/23 (39.1%) in surrounding tissues, respectively. Overexpression of beta-catenin in HCC tissues compared to the surrounding liver tissue was found to be higher in HCC tissues (p=0.015). In addition, we found that the expression of phospho-GSK-3beta was related with the accumulation of beta-catenin in surrounding tissues (p<0.05). The expression of phospho-GSK-3beta and its association with the development of HCC is reported for the first time. In addition, this is the first report from Malaysia which shows that there are no mutations at the GSK-3beta consensus phosphorylation sites on beta-catenin gene in all 23 paired HCC and surrounding tissues. This result differed from HCC in geographical areas with high aflatoxin exposure.
  2. Fonseka M, Ramasamy R, Tan BC, Seow HF
    Cell Biol Int, 2012 Sep;36(9):793-801.
    PMID: 22335239 DOI: 10.1042/CBI20110595
    hUCB-MSC (human umbilical cord blood-derived mesenchymal stem cells) offer an attractive alternative to bone marrow-derived MSC for cell-based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB-MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB-MSC. Co-culturing of hUCB-MSC and K562 resulted in inhibition of proliferation of K562 in a dose-dependent manner. However, the anti-proliferative effect was reduced in transwells, suggesting the importance of direct cell-to-cell contact. hUCB-MSC inhibited proliferation of K562, arresting them in the G0 /G1 phase. NO (nitric oxide) was not involved in the hUCB-MSC-mediated tumour suppression. The presence of IL-6 (interleukin 6) and IL-8 were obvious in the hUCB-MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL-4 and Th17 cytokine, IL-17 were not secreted by hUCB-MSC. There was an increase in the number of hUCB-MSC expressing the latent membrane-bound form of TGFβ1 co-cultured with K562. The anti-proliferative effect of hUCB-MSC was due to arrest of the growth of K562 in the G0 /G1 phase. The mechanisms underlying increased IL-6 and IL-8 secretion and LAP (latency-associated peptide; TGFβ1) by hUCB-MSC remains unknown.
  3. Chai BY, Yip WK, Dusa N, Mohtarrudin N, Seow HF
    Pathol Oncol Res, 2020 Oct;26(4):2291-2298.
    PMID: 32462420 DOI: 10.1007/s12253-020-00820-4
    Interleukin-17 (IL-17) is a pro-inflammatory cytokine found in various cancers. Current evidence indicates that IL-17 plays a vital role in tumour initiation and progression in colorectal carcinoma (CRC) via binding with its receptor, IL-17RA. However, the association between clinicopathological features and presence of IL-17 and IL-17RA protein in primary CRC tissues remains unclear. This study also investigates the difference between the presence of IL-17 and IL-17RA in the paired tumour tissues versus adjacent normal tissues. The presence of IL-17RA and IL-17 protein in primary CRC tissues was determined by immunohistochemistry. Associations between clinicopathological features and IL-17RA and IL-17 immunoreactivity, were analyzed by χ2 tests. We found that both IL-17RA (p = 0.001) and IL-17 (p = 0.025) in tumour cells of primary CRC tissues was significantly lower as compared to adjacent normal tissue. Positive immunoreactivity for IL-17RA and IL-17 were detected in 51.0% and 16.8% of tumour tissues, respectively. Furthermore, negative immunoreactivity of IL-17R was significantly associated with advanced stage according to TNM classifier (p = 0.027), high grade of tumour (p = 0.019), increased depth of tumour invasion (p = 0.023) and vascular invasion (p = 0.039). Positive IL-17 immunoreactivity was associated with advanced stage (p = 0.008) and lymph node metastasis (p = 0.008). Thus, this study suggests that the loss of IL-17RA expression occurs as tumour progresses and this may predict the aggressiveness of tumour whilst expression of IL-17 promotes tumour progression and lymph node metastasis. Thus, loss of IL-17RA could be a useful prognostic biomarker for tumour progression in CRC patients.
  4. Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N
    Biology (Basel), 2021 Aug 31;10(9).
    PMID: 34571731 DOI: 10.3390/biology10090854
    5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
  5. Tan GH, Yusoff K, Seow HF, Tan WS
    J Med Virol, 2005 Dec;77(4):475-80.
    PMID: 16254965
    The immunodominant region of hepatitis B virus (HBV) located in the viral small surface antigen (S-HBsAg) elicits virus-neutralizing and protective antibodies. In order to develop an easy and inexpensive method to produce this region without the need for extensive purification, amino acid residues 111-156 of S-HBsAg were fused to the C-terminal end of the 10B capsid protein of T7 phage. Western blotting and ELISA confirmed the expression of the recombinant protein on the surface of the phage particles. The recombinant phage exhibited the antigenic and immunogenic characteristics of HBsAg, illustrating its potential as an immunological reagent and vaccine.
  6. Ho KL, Yusoff K, Seow HF, Tan WS
    J Med Virol, 2003 Jan;69(1):27-32.
    PMID: 12436474
    M13 phages that display random disulfide constrained heptapeptides on their gpIII proteins were used to select for high affinity ligands to hepatitis B core antigen (HBcAg). Phages bearing the amino acid sequences C-WSFFSNI-C and C-WPFWGPW-C were isolated, and a binding assay in solution showed that these phages bind tightly to full-length and truncated HBcAg with K D rel values less than 25 nM, which is at least 10 orders of magnitude higher than phage carrying the peptide sequence LLGRMK selected from a linear peptide library. Both the phages that display the constrained peptides were inhibited from binding to HBcAg particles by a monoclonal antibody that binds specifically to the immunodominant region of the particles. A synthetic heptapeptide with the amino acid sequence WSFFSNI derived from one of the fusion peptides inhibits the binding of large surface antigen (L-HBsAg) to core particles with an IC50 value of 12 +/- 2 microM. This study has identified a smaller peptide with a greater inhibitory effect on L-HBsAg-HBcAg association.
  7. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
  8. Yip WK, Choo CW, Leong VC, Leong PP, Jabar MF, Seow HF
    APMIS, 2013 Oct;121(10):954-66.
    PMID: 23992303 DOI: 10.1111/apm.12152
    Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real-time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well-differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki-67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports.
  9. Vidyadaran S, Ooi YY, Subramaiam H, Badiei A, Abdullah M, Ramasamy R, et al.
    Cell Immunol, 2009;259(1):105-10.
    PMID: 19577228 DOI: 10.1016/j.cellimm.2009.06.005
    A challenge for studies involving microglia cultures is obtaining sufficient cells for downstream experiments. Macrophage colony-stimulating factor (M-CSF) has been used to improve yield of microglia in culture. However, the effects of M-CSF on activation profiles of microglia cultures are still unclear. Microglia activation is characterised by upregulation of co-stimulatory molecules and an inflammatory phenotype. The aim of this study is to demonstrate whether M-CSF supplementation alters microglial responses in resting and activated conditions. Microglia derived from mixed glia cultures and the BV-2 microglia cell line were cultivated with/without M-CSF and activated with lipopolysaccharide (LPS) and beta amyloid (Abeta). We show M-CSF expands primary microglia without affecting microglial responses to LPS and Abeta, as shown by the comparable expression of MHC class II and CD40 to microglia grown without this growth factor. M-CSF supplementation in BV-2 cells had no effect on nitric oxide (NO) production. Therefore, M-CSF can be considered for improving microglia yield in culture without introducing activation artefacts.
  10. Seow HF, Yip WK, Loh HW, Ithnin H, Por P, Rohaizak M
    Pathol Oncol Res, 2010 Jun;16(2):239-48.
    PMID: 19882362 DOI: 10.1007/s12253-009-9216-3
    Activation of Akt signaling pathway has been documented in various human malignancies, including breast carcinoma. The objective of this study is to determine the incidence of Akt phosphorylation in breast tumours and its relationship with expression of ER-alpha, ER-beta, HER2, Ki-67 and phosphorylated Bcl-2 associated death domain (p-BAD). Immunohistochemical staining was performed to detect these molecules on 43 paraffin-embedded breast tumour tissues with commercially available antibodies. Eighteen (41.9%), 3 (7.0%), 23 (53.5%), 35 (81.4%), 21 (48.8%), 29 (67.4%), and 34 (81.0%) of breast tumours were positive for nuclear ER-alpha, nuclear ER-beta, membranous HER2, cytonuclear p-Akt (Thr308), p-Akt (Ser473), p-BAD and Ki-67, respectively. ER-alpha expression was inversely correlated with HER2 and Ki-67 (P = 0.041 and P = 0.040, respectively). The p-Akt (Ser473) was correlated with increased level of p-BAD (Ser136) (P = 0.012). No relationship of Akt phosphorylation with HER2, ER-alpha or ER-beta was found. The p-Akt (Ser473) immunoreactivity was significantly higher in stage IV than in stage I or II (P = 0.036 or P = 0.009). The higher Ki-67 and lower ER-alpha expression showed an association with patient age of <50 years (P = 0.004) and with positive nodal status (P = 0.033), respectively. Our data suggest that the Akt phosphorylation and inactivation of its downstream target, BAD may play a role in survival of breast cancer cell. This study does not support the simple model of linear HER2/PI3K/Akt pathway in breast cancer.
  11. Ching-Shian Leong V, Jabal MF, Leong PP, Abdullah MA, Gul YA, Seow HF
    Cancer Genet. Cytogenet., 2008 Dec;187(2):74-9.
    PMID: 19027487 DOI: 10.1016/j.cancergencyto.2008.07.005
    Somatic mutations of phosphoinositide-3-kinase, catalytic, alpha; PIK3CA gene have been reported in several types of human cancers. The majority of the PIK3CA mutations map to the three "hot spots" - E542 K and E545 K in the helical (exon 9) and H1047R in the kinase (exon 20) domains of the p110alpha. These hot spot mutations lead to a gain of function in PI3 K signaling. We aimed to determine the frequency of PIK3CA mutations in the three most common Malaysian cancers. In this study, we assessed the genetic alterations in the PIK3CA gene in a series of 20 breast carcinomas, 24 colorectal carcinomas, 27 nasopharyngeal carcinomas (NPC), and 5 NPC cell lines. We performed mutation analysis of the PIK3CA gene by genomic polymerase chain reaction (PCR) and followed by DNA direct sequencing in exons 9 and 20. No mutations were detected in any of the 24 colorectal and 27 NPC samples, but one hot spot mutation located at exon 20 was found in a NPC cell line, SUNE1. Interestingly, PIK3CA somatic mutations were present in 6/20 (30%) breast carcinomas. Two of the six mutations, H1047R, have been reported previously as a hot spot mutation. Only one out of three hot spot mutations were identified in breast tumor samples. The remaining four mutations were novel. Our data showed that a higher incidence rate of PIK3CA mutations was present in Malaysian breast cancers as compared to colorectal and nasopharyngeal tumor tissues. Our findings also indicate that PIK3CA mutations play a pivotal role in activation of the PI3 K signaling pathway in breast cancer, and specific inhibitors of PIK3CA could be useful for breast cancer treatment in Malaysia.
  12. Looi CY, D' Silva EC, Seow HF, Rosli R, Ng KP, Chong PP
    FEMS Microbiol Lett, 2005 Aug 15;249(2):283-9.
    PMID: 16006060
    The aims of our research were to investigate the gene expression of the multidrug efflux transporter, CDR1 and the major drug facilitator superfamily transporter, MDR1 gene in azole drug-resistant Candida albicans and Candida glabrata clinical isolates recovered from vaginitis patients; and to identify hotspot mutations that may be present in the C. albicans CaCDR1 gene that could be associated with drug-resistance. The relative expression of the CDR1 and MDR1 transcripts in ketoconazole and clotrimazole-resistant isolates and drug-susceptible ATCC strains were determined by semi-quantitative reverse transcription-polymerase chain reaction. Expression of CaCDR1 transcript was upregulated to varying extents in all three azole-resistant C. albicans isolates studied (1.6-, 3.7- and 3.9-fold) and all three C. glabrata isolates tested (at 1.9-, 2.3- and 2.7-fold). The overexpression level of CaCDR1 in the isolates correlated with the degree of resistance as reflected by the minimum inhibitory concentration (MIC) of the drugs. The messenger RNA for another efflux pump, MDR1, was also overexpressed in one of the azole-resistant C. albicans isolates that overexpressed CDR1. This finding suggests that drug-resistance may involve synergy between energy-dependent drug efflux pumps CDR1p and MDR1p in some but not all isolates. Interestingly, DNA sequence analysis of the promoter region of the CaCDR1 gene revealed several point mutations in the resistant clinical isolates compared to the susceptible isolates at 39, 49 and 151 nucleotides upstream from the ATG start codon. This finding provides new information on point mutations in the promoter region which may be responsible for the overexpression of CDR1 in drug-resistant isolates.
  13. Ong HT, Duraisamy G, Kee Peng N, Wen Siang T, Seow HF
    Microbes Infect., 2005 Mar;7(3):494-500.
    PMID: 15792534
    Hepatitis B virus (HBV) has been classified into eight genotypes, designated A-H. These genotypes are known to have distinct geographic distributions. The clinical importance of genotype-related differences in the pathogenicity of HBV has been revealed recently. In Malaysia, the current distribution of HBV remains unclear. The aim of this study was to determine the genotypes and subtypes of HBV by using PCR, followed by DNA sequencing, as well as to analyse the mutations in the immunodominant region of preS and S proteins. The S gene sequence was determined from HBV DNA of four apparently healthy blood donors' sera and three sera from asymptomatic chronic hepatitis B carriers. Of this batch of sera, the preS gene sequence was obtained from HBV DNA from three out of the four blood donors and two out of the three chronic carriers. Due to insufficient sera, we had to resort to using sera from another blood donor to make up for the sixth DNA sequence of the preS gene. Based on the comparative analysis of the preS sequences with the reported sequences in the GenBank database, HBV DNA from two normal carriers was classified as genotype C. Genotype B was assigned to HBV from one blood donor and two hepatitis B chronic carriers, whereas HBV of one chronic carrier was of genotype D. Based on the S gene sequences, HBV from three blood donors was of genotype C, that of one blood donor and one chronic carrier was of genotype B, and the remaining, of genotype D. In the five cases where both preS and S gene sequences were determined, the genotypes assigned based on either the preS or S gene sequences were in concordance. The nature of the deduced amino acid (aa) sequences at positions 125, 127, 134, 143, 159, 161 and 168 of the S gene enabled the classification of these sequences into subtypes, namely, adrq+, adw2 and ayw2. The clustering of our DNA sequences into genotype groups corresponded to their respective subtype, that is, adw2 in genotype B, adrq in genotype C and ayw in genotype D. Analysis of the point mutations revealed that five of the sequences contained aa substitutions at immunodominant epitopes involved in B or/and T cell recognition. In conclusion, despite the low numbers of samples studied, due to budget constraints, these data are still worthwhile reporting, as it is important for the control of HBV infections. In addition, the genotype and mutational data obtained in this study may be useful for designing new treatment regimes for HBV patients.
  14. Yip WK, He PY, Abdullah MA, Yusoff S, Seow HF
    Pathol Oncol Res, 2016 Apr;22(2):413-9.
    PMID: 26581613 DOI: 10.1007/s12253-015-0007-8
    Molecular alterations in PIK3CA oncogene that encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K p110α) are commonly found in human cancers. In this study, we examined the expression of PI3K p110α and PIK3CA gene amplification in 74 nasopharyngeal carcinoma (NPC) cases. Immunohistochemical staining demonstrated overexpression of PI3K p110α protein in 44.6% (33/74) of NPCs and 4.8% (2/42) of the adjacent normal nasopharyngeal mucosa. Copy number of PIK3CA gene was successfully analyzed in 51 of the total NPC cases and 19 non-malignant nasopharynx tissues by quantitative real-time PCR. Using mean + 2(standard deviation) of copy numbers in the non-malignant nasopharynx tissues as a cutoff value, PIK3CA copy number gain was found in 10 of 51 (19.6%) NPC cases. High PI3K p110α expression level was correlated with increased PIK3CA copy number (Spearman's rho =0.324, P = 0.02). PI3K p110α expression and PIK3CA copy number did not associate with Akt phosphorylation, and patient and tumor variables. This study suggests that PI3K p110α overexpression, which is attributed, at least in part, to PIK3CA gene amplification, may contribute to NPC pathogenesis. However, these molecular aberrations may not be responsible for activation of Akt signaling in NPC.
  15. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT
    Anaerobe, 2015 Aug;34:132-8.
    PMID: 26028405 DOI: 10.1016/j.anaerobe.2015.05.009
    A conspicuous new concept of pathogens living as the microbial societies in the human host rather than free planktonic cells has raised considerable concerns among scientists and clinicians. Fungal biofilms are communities of cells that possess distinct characteristic such as increased resistance to the immune defence and antimycotic agents in comparison to their planktonic cells counterpart. Therefore, inhibition of the biofilm may represent a new paradigm for antifungal development. In this study, we aim to evaluate the in vitro modulation of vulvovaginal candidiasis (VVC)-causing Candida glabrata biofilms using probiotic lactobacilli strains. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 were shown to have completely inhibited C. glabrata biofilms and the results were corroborated by scanning electron microscopy (SEM), which revealed scanty structures of the mixed biofilms of C. glabrata and probiotic lactobacilli strains. In addition, biofilm-related C. glabrata genes EPA6 and YAK1 were downregulated in response to the probiotic lactobacilli challenges. The present study suggested that probiotic L. rhamnosus GR-1 and L. reuteri RC-14 strains inhibited C. glabrata biofilm by partially impeding the adherence of yeast cells and the effect might be contributed by the secretory compounds produced by these probiotic lactobacilli strains. Further investigations are required to examine and identify the biofilm inhibitory compounds and the mechanism of probiotic actions of these lactobacilli strains.
  16. Hong SK, Gul YA, Ithnin H, Talib A, Seow HF
    Asian J Surg, 2004 Jan;27(1):10-7.
    PMID: 14719508
    BACKGROUND: Promising new pharmacological agents and gene therapy targeting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) could modulate treatment of colorectal cancer in the future. The aim of this study was to elucidate the expression fo beta-catenin and teh presence of COX-2 and iNOS in colorectal cancer specimens in Malaysia. This is a useful prelude to future studies investigating interventions directed towards COX-2 adn iNOS.

    METHODS: A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral.

    RESULTS: COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores.

    CONCLUSIONS: the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

  17. Yip WK, Leong VC, Abdullah MA, Yusoff S, Seow HF
    Oncol Rep, 2008 Feb;19(2):319-28.
    PMID: 18202777
    The Akt pathway is one of the most common molecular alterations in various human malignancies. However, its involvement in nasopharyngeal carcinoma (NPC) tumorigenesis has not been well established. In this study, the status of Akt activation and expression of its upstream and downstream molecules was investigated in 64 NPC and 38 non-malignant nasopharyngeal tissues by immunohistochemistry. The hotspot mutations of PIK3CA, encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K), were also determined in 25 of these NPC tissues. No hotspot mutations were found in any of the samples tested. Akt was activated in 27 (42.2%) and 23 (35.9%) NPCs, as indicated by p-Akt (Thr308) and p-Akt (Ser473) immunoreactivity, respectively. PTEN loss did not correlate statistically with activated Akt. However, a positive correlation was observed between activated Akt and phospho-epidermal growth factor receptor (p-EGFR), suggesting that the EGFR signaling might be one of the upstream regulators of the Akt pathway. The phosphorylation of forkhead (FKHR) and Bcl-2 associated death domain (BAD), but not mammalian target of rapamycin and glycogen synthase kinase-3beta, was significantly correlated with Akt activation. This implies that Akt promotes cell proliferation (as estimated by Ki-67) and survival, at least, through the inactivation of FKHR and BAD in NPC. Our data revealed that the EGFR/PI3K/Akt signaling pathway is important in NPC pathogenesis and that PIK3CA hotspot mutations are rare in NPC.
  18. Yip WK, Cheenpracha S, Chang LC, Ho CC, Seow HF
    Int J Oncol, 2010 Nov;37(5):1229-41.
    PMID: 20878070
    Secondary metabolites from actinomycetes especially the genus Streptomyces may be one of the most important sources for novel anticancer agents. A purified fraction from a novel actinomycete strain, Streptomyces sp. H7372, was elucidated in breast cancer cells. We have isolated three purified fractions from a novel strain, Streptomyces sp. H7372. One of the fractions, designated as 31-2, exhibited the strongest growth-inhibitory effect and thereby was selected for further studies. 31-2 exerted a growth-inhibitory effect on a panel of 15 human cancer and 2 non-malignant cell lines. In MCF-7 and MDA-MB-231 breast cancer cells, 31-2 induced a cytostatic (anti-proliferative) effect without causing cytotoxicity (cell death). Our data suggest that the cytostasis resulted from cell cycle arrest at the G1 phase in MCF-7 cells and at the S phase in MDA-MB-231 cells. Western blot analysis demonstrated a modulation of phosphorylation of the Rb and CDC2 proteins and of CDK4, cyclin D1 and cyclin D3 in the 31-2-treated breast cancer cell lines. The protein levels of CDK2, CDK6, and PCNA were not affected by 31-2 treatment. 31-2 also exhibited an anti-invasive effect in MDA-MB-231 cells. However, this effect is not attributed to the modulation of proteolytic activity in MDA-MB-231 cells as the enzymatic degradation of type IV collagen was not affected by 31-2. The 31-2 is a potent cytostatic and anti-invasive agent and modulates the cell cycle pathway. Together, these results will have important implications in searching for novel approaches to treat cancer.
  19. Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP
    J Basic Microbiol, 2009 Dec;49(6):579-83.
    PMID: 19810039 DOI: 10.1002/jobm.200900035
    Candida albicans is capable of undergoing yeast-hypha transition to attain pathogenicity in humans. In this study, we investigated the differential expression of CaSIR2 via quantitative real-time PCR (qPCR), during yeast-hypha transition with and without the presence of 2-dodecanol. SIR2 transcript levels were found to be significantly enhanced after hyphal induction as compared to the yeast form. This study found that 2-dodecanol is able to inhibit hyphal development and block SIR2 up-regulation, even in hyphal-inducing growth conditions. We suggest that SIR2 may be involved in Candida albicans quorum-sensing and serum-induced yeast-hyphae transition via the Ras1-cAMP-Efg1 signalling cascade.
  20. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, et al.
    Cell Biol Int, 2011 Mar;35(3):221-6.
    PMID: 20946106 DOI: 10.1042/CBI20100326
    MSCs (mesenchymal stem cells) promise a great potential for regenerative medicine due to their unique properties of self-renewal, high plasticity, modulation of immune response and the flexibility for genetic modification. Therefore, the increasing demand for cellular therapy necessitates a larger-scale production of MSC; however, the technical and ethical issues had put a halt on it. To date, studies have shown that MSC could be derived from human UC (umbilical cord), which is once considered as clinical waste. We have compared the two conventional methods which are classic enzymatic digestion and explant method with our newly tailored enzymatic-mechanical disassociation method to generate UC-MSC. The generated UC-MSCs from the methods above were characterized based on their immunophenotyping, early embryonic transcription factors expression and mesodermal differentiation ability. Our results show that enzymatic-mechanical disassociation method increase the initial nucleated cell yield greatly (approximately 160-fold) and maximized the successful rate of UC-MSC generation. Enzymatic-mechanical disassociation-derived UC-MSC exhibited fibroblastic morphology and surface markers expression of CD105, CD73, CD29, CD90 and MHC class I. Furthermore, these cells constitutively express early embryonic transcription factors (Nanog, Oct-4, Sox-2 and Rex-1), as confirmed by RT-PCR, indicating their multipotency and high self-renewal capacity. They are also capable of differentiating into osteoblasts and adipocytes when given an appropriate induction. The present study demonstrates a new and efficient approach in generating MSC from UC, hence serving as ideal alternative source of mesenchymal stem cell for clinical and research use.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links