Displaying publications 21 - 40 of 76 in total

Abstract:
Sort:
  1. Wong SK, Lim YY, Abdullah NR, Nordin FJ
    PMID: 21232161 DOI: 10.1186/1472-6882-11-3
    Studies have shown that the barks and roots of some Apocynaceae species have anticancer and antimalarial properties. In this study, leaf extracts of five selected species of Apocynaceae used in traditional medicine (Alstonia angustiloba, Calotropis gigantea, Dyera costulata, Kopsia fruticosa and Vallaris glabra) were assessed for antiproliferative (APF) and antiplasmodial (APM) activities, and analysed for total alkaloid content (TAC), total phenolic content (TPC) and radical-scavenging activity (RSA). As V. glabra leaf extracts showed wide spectrum APF and APM activities, they were further screened for saponins, tannins, cardenolides and terpenoids.
  2. Wong SK, Tan WS, Omar AR, Tan CS, Yusoff K
    Acta Virol., 2009;53(1):35-41.
    PMID: 19301949
    Hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays a vital role in the viral infectivity, host immunity, and disease diagnosis. A portion of the HN gene encoding the ectodomain (nt 142-1739) was cloned and expressed in Escherichia coli yielding an insoluble HN protein and a soluble NusA-HN protein containing N-utilization substance A (NusA) fusion component. Both recombinant proteins were purified and used for immunization of chickens. The recombinant HN protein induced higher antibody titers as compared to the recombinant NusA-HN protein. These antibodies were able to react in immunoblot analysis with the corresponding recombinant proteins as well as with the HN protein of NDV.
  3. Chan EW, Lye PY, Wong SK
    Chin J Nat Med, 2016 Jan;14(1):17-30.
    PMID: 26850343 DOI: 10.3724/SP.J.1009.2016.00017
    The present review is aimed at providing a comprehensive summary on the botany, utility, phytochemistry, pharmacology, and clinical trials of Morus alba (mulberry or sang shu). The mulberry foliage has remained the primary food for silkworms for centuries. Its leaves have also been used as animal feed for livestock and its fruits have been made into a variety of food products. With flavonoids as major constituents, mulberry leaves possess various biological activities, including antioxidant, antimicrobial, skin-whitening, cytotoxic, anti-diabetic, glucosidase inhibition, anti-hyperlipidemic, anti-atherosclerotic, anti-obesity, cardioprotective, and cognitive enhancement activities. Rich in anthocyanins and alkaloids, mulberry fruits have pharmacological properties, such as antioxidant, anti-diabetic, anti-atherosclerotic, anti-obesity, and hepatoprotective activities. The root bark of mulberry, containing flavonoids, alkaloids and stilbenoids, has antimicrobial, skin-whitening, cytotoxic, anti-inflammatory, and anti-hyperlipidemic properties. Other pharmacological properties of M. alba include anti-platelet, anxiolytic, anti-asthmatic, anthelmintic, antidepressant, cardioprotective, and immunomodulatory activities. Clinical trials on the efficiency of M. alba extracts in reducing blood glucose and cholesterol levels and enhancing cognitive ability have been conducted. The phytochemistry and pharmacology of the different parts of the mulberry tree confer its traditional and current uses as fodder, food, cosmetics, and medicine. Overall, M. alba is a multi-functional plant with promising medicinal properties.
  4. Yee MMF, Chin KY, Ima-Nirwana S, Wong SK
    Molecules, 2021 Mar 21;26(6).
    PMID: 33801011 DOI: 10.3390/molecules26061757
    Vitamin A is a fat-soluble micronutrient essential for growth, immunity, and good vision. The preformed retinol is commonly found in food of animal origin whereas provitamin A is derived from food of plant origin. This review summarises the current evidence from animal, human and cell-culture studies on the effects of vitamin A towards bone health. Animal studies showed that the negative effects of retinol on the skeleton were observed at higher concentrations, especially on the cortical bone. In humans, the direct relationship between vitamin A and poor bone health was more pronounced in individuals with obesity or vitamin D deficiency. Mechanistically, vitamin A differentially influenced the stages of osteogenesis by enhancing early osteoblastic differentiation and inhibiting bone mineralisation via retinoic acid receptor (RAR) signalling and modulation of osteocyte/osteoblast-related bone peptides. However, adequate vitamin A intake through food or supplements was shown to maintain healthy bones. Meanwhile, provitamin A (carotene and β-cryptoxanthin) may also protect bone. In vitro evidence showed that carotene and β-cryptoxanthin may serve as precursors for retinoids, specifically all-trans-retinoic acid, which serve as ligand for RARs to promote osteogenesis and suppressed nuclear factor-kappa B activation to inhibit the differentiation and maturation of osteoclasts. In conclusion, we suggest that both vitamin A and provitamin A may be potential bone-protecting agents, and more studies are warranted to support this hypothesis.
  5. Wong SK, Wong YH, Chin KY, Ima-Nirwana S
    Polymers (Basel), 2021 Sep 12;13(18).
    PMID: 34577976 DOI: 10.3390/polym13183075
    Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.
  6. Nor Muhamad ML, Ekeuku SO, Wong SK, Chin KY
    Nutrients, 2022 Nov 16;14(22).
    PMID: 36432535 DOI: 10.3390/nu14224851
    BACKGROUND: Osteoporosis is caused by the deterioration of bone density and microstructure, resulting in increased fracture risk. It transpires due to an imbalanced skeletal remodelling process favouring bone resorption. Various natural compounds can positively influence the skeletal remodelling process, of which naringenin is a candidate. Naringenin is an anti-inflammatory and antioxidant compound found in citrus fruits and grapefruit. This systematic review aims to present an overview of the available evidence on the skeletal protective effects of naringenin.

    METHOD: A systematic literature search was conducted using the PubMed and Scopus databases in August 2022. Original research articles using cells, animals, or humans to investigate the bone protective effects of naringenin were included.

    RESULTS: Sixteen eligible articles were included in this review. The existing evidence suggested that naringenin enhanced osteoblastogenesis and bone formation through BMP-2/p38MAPK/Runx2/Osx, SDF-1/CXCR4, and PI3K/Akt/c-Fos/c-Jun/AP-1 signalling pathways. Naringenin also inhibited osteoclastogenesis and bone resorption by inhibiting inflammation and the RANKL pathway.

    CONCLUSIONS: Naringenin enhances bone formation while suppressing bone resorption, thus achieving its skeletal protective effects. It could be incorporated into the diet through fruit intake or supplements to prevent bone loss.

  7. Bahar-Moni AS, Wong SK, Mohd-Shariff N, Sapuan J, Abdullah S
    Malays Orthop J, 2021 Nov;15(3):52-57.
    PMID: 34966495 DOI: 10.5704/MOJ.2111.008
    Introduction: Distal radius fracture (DRF) is the most common orthopaedic injury with a reported incidence of 17.5%. It is commonly seen in young males and elderly females. Over the last two decades, there is an increasing tendency to treat DRF surgically by open reduction and internal fixation (ORIF) with plate and screws owing to improved device design, better fixation and operative technique. The purpose of this study was to evaluate the demographic characteristics, type and method of fixation, and outcome in all surgically treated DRF cases from 2014 to 2018 in a university hospital.

    Materials and methods: A retrospective review of all surgically treated DRF cases with one year follow-up in a tertiary hospital in Malaysia was done. Patients who left the follow-up clinic before one-year post-surgery or before fracture union were excluded. A total of 82 patients with 88 DRF were finally included into the study and outcome in terms of union time and need of multiple surgeries were analysed along with the predictors.

    Results: In this study, mean age of the patient was 46.2 years. Motor vehicle accident was the commonest cause of the fracture and AO Type C fracture was the commonest fracture type. Seventeen (19.3%) out of 88 fractures were compound fracture. Open reduction and internal fixation with volar plate was the most common surgical technique done in this series (93.2%). Three (3.5%) out of 88 fractures required multiple surgeries and eighty-three (94.3%) DRF cases were united before nine months of the surgery in this study. There was statistically significant association between clinical type of the fracture and the union time (p-value <0.05).

    Conclusion: There was a 1.7:1 male-female ratio with AO-C fracture being the most common type of fracture. The most common method of fixation was ORIF with volar locked plate. Patients with closed fractures have a higher rate of union compared to open fractures at nine months.

  8. Wong SK, Ramli FF, Ali A, Ibrahim N'
    Biomedicines, 2022 Dec 13;10(12).
    PMID: 36551995 DOI: 10.3390/biomedicines10123239
    Metabolic syndrome (MetS) refers to a cluster of metabolic dysregulations, which include insulin resistance, obesity, atherogenic dyslipidemia and hypertension. The complex pathogenesis of MetS encompasses the interplay between environmental and genetic factors. Environmental factors such as excessive nutrients and sedentary lifestyle are modifiable and could be improved by lifestyle modification. However, genetic susceptibility to MetS, a non-modifiable factor, has attracted the attention of researchers, which could act as the basis for future diagnosis, prognosis, and therapy for MetS. Several cholesterol-related genes associated with each characteristic of MetS have been identified, such as apolipoprotein, lipoprotein lipase (LPL), cholesteryl ester transfer protein (CETP) and adiponectin. This review aims to summarize the genetic information of cholesterol-related genes in MetS, which may potentially serve as biomarkers for early prevention and management of MetS.
  9. Zhu Y, Tan JK, Wong SK, Goon JA
    Int J Mol Sci, 2023 May 23;24(11).
    PMID: 37298120 DOI: 10.3390/ijms24119168
    Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.
  10. Wong SK, Mohamad NV, Jayusman PA, Ibrahim N'
    Int J Mol Sci, 2023 Aug 04;24(15).
    PMID: 37569816 DOI: 10.3390/ijms241512441
    A positive association between insulin resistance and osteoporosis has been widely established. However, crosstalk between the signalling molecules in insulin and Wingless (Wnt)/beta-(β-)catenin transduction cascades orchestrating bone homeostasis remains not well understood. The current review aims to collate the existing evidence, reporting (a) the expression of insulin signalling molecules involved in bone-related disorders and (b) the expression of Wnt/β-catenin signalling molecules involved in governing insulin homeostasis. The downstream effector molecule, glycogen synthase kinase-3 beta (GSK3β), has been identified to be a point of convergence linking the two signal transduction networks. This review highlights that GSK3β may be a drug target in the development of novel anabolic agents and the potential use of GSK3β inhibitors to treat bone-related disorders.
  11. Wong SK, Chin KY, Ahmad F, Ima-Nirwana S
    J Food Biochem, 2020 Aug 03.
    PMID: 32744348 DOI: 10.1111/jfbc.13371
    This study aimed to evaluate the oxidative stress status, antioxidants capacity, and presence of nonalcoholic fatty liver disease (NAFLD) in an animal model of MetS induced by high-carbohydrate high-fat (HCHF) diet. Male Wistar rats were randomized into two groups, assigned for two different types of diet (standard rat pellet or HCHF diet) for 20 weeks. Liver was excised, weighed, and subjected to lipid peroxidation, nitric oxide (NO·) production, antioxidants activity, and histological assessment. The HCHF rats had higher lipid peroxidation and NO· level but lower enzymatic and nonenzymatic antioxidant levels than the normal animals. Histological evaluation revealed higher lobular inflammation, hepatocellular ballooning, NAFLD activity score, and lipid accumulation in the liver of HCHF group. In conclusion, the HCHF diet causes an increase in oxidative stress, depletion of antioxidants capacity, NAFLD, and liver injury. The induction of oxidative stress may be partially responsible for the development of NAFLD in MetS. PRACTICAL APPLICATIONS: The prevalence of MetS is estimated to increase rapidly with the escalating levels of obesity, diabetes, hypertension, and dyslipidemia. A suitable animal model of MetS that best mimicked the human disease state with known underlying mechanisms responsible for the pathogenesis of MetS is indispensable to search for potential adjunct therapies and drug targets. Thus, our current study elucidated the involvement of oxidative stress in linking MetS and NAFLD which might resemble the pathogenesis of MetS among Southeast Asian population.
  12. Chin KY, Wong SK, Ekeuku SO, Pang KL
    Diabetes Metab Syndr Obes, 2020;13:3667-3690.
    PMID: 33116718 DOI: 10.2147/DMSO.S275560
    Metabolic syndrome (MetS) and osteoporosis are two medical problems plaguing the ageing populations worldwide. Though seemingly distinctive to each other, metabolic derangements are shown to influence bone health. This review summarises the relationship between MetS and bone health derived from epidemiological studies and explains the mechanistic basis of this relationship. The discourse focuses on the link between MetS and bone mineral density, quantitative sonometric indices, geometry and fracture risk in humans. The interesting sex-specific trend in the relationship, probably due to factors related to body composition and hormonal status, is discussed. Mechanistically, each component of MetS affects the bone distinctly, forming a complex interacting network influencing the skeleton. Lastly, the effects of MetS management, such as pharmacotherapies, exercise and bariatric surgery, on bone, are presented. This review aims to highlight the significant relationship between MetS and bone, and proper management of MetS with the skeletal system in mind could prevent cardiovascular and bone complications.
  13. Wong SK, Lim YY, Abdullah NR, Nordin FJ
    Pharmacognosy Res, 2011 Apr;3(2):100-6.
    PMID: 21772753 DOI: 10.4103/0974-8490.81957
    The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves.
  14. Wong SK, Lim YY, Ling SK, Chan EW
    Pharmacognosy Res, 2014 Jan;6(1):67-72.
    PMID: 24497746 DOI: 10.4103/0974-8490.122921
    Three compounds isolated from the methanol (MeOH) leaf extract of Vallaris glabra (Apocynaceae) were those of caffeoylquinic acids (CQAs). This prompted a quantitative analysis of their contents in leaves of V. glabra in comparison with those of five other Apocynaceae species (Alstonia angustiloba, Dyera costulata, Kopsia fruticosa, Nerium oleander, and Plumeria obtusa), including flowers of Lonicera japonica (Japanese honeysuckle), the commercial source of chlorogenic acid (CGA).
  15. Leong SC, Abang F, Beattie A, Kueh RJ, Wong SK
    ScientificWorldJournal, 2012;2012:651416.
    PMID: 22629178 DOI: 10.1100/2012/651416
    Aspects of the incidence and spread of the citrus disease huanglongbing (HLB) in relation to the vector Diaphorina citri population fluctuation were studied from January 1999 to December 2001 seasons in a 0.8 ha citrus orchard at Jemukan (1° 33'N, 110° 41'E), Southwest Sarawak in Malaysia. In relation to insecticide and horticultural mineral oils (HMOs) use, levels of HLB infection rose quite rapidly over the next 3 years in the unsprayed control and less rapidly in the other treatments such as imidacloprid, nC24HMO, and triazophos/cypermethrin/chlorpyrifos. Levels of HLB as determined by Polymerase Chain Reaction (PCR) were 42.2%, 9.4%, 11.4%, and 22.7%, respectively. The effects of nC(24)HMO and conventional pesticides on the citrus psyllid population and parasitoids in citrus orchard were also determined.
  16. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Nutrients, 2016 Jun 07;8(6).
    PMID: 27338453 DOI: 10.3390/nu8060347
    Metabolic syndrome (MetS) and osteoporosis are two major healthcare problems worldwide. Metabolic syndrome is a constellation of medical conditions consisting of central obesity, hyperglycemia, hypertension, and dyslipidemia, in which each acts on bone tissue in different ways. The growing prevalence of MetS and osteoporosis in the population along with the controversial findings on the relationship between both conditions suggest the importance for further investigation and discussion on this topic. This review aims to assess the available evidence on the effects of each component of MetS on bone metabolism from the conventional to the contemporary. Previous studies suggested that the two conditions shared some common underlying pathways, which include regulation of calcium homeostasis, receptor activator of NF-κB ligand (RANKL)/receptor activator of the NF-κB (RANK)/osteoprotegerin (OPG) and Wnt-β-catenin signaling pathways. In conclusion, we suggest that MetS may have a potential role in developing osteoporosis and more studies are necessary to further prove this hypothesis.
  17. Chan EWC, Wong SK, Tangah J, Inoue T, Chan HT
    J Integr Med, 2020 May;18(3):189-195.
    PMID: 32115383 DOI: 10.1016/j.joim.2020.02.006
    Flavonoids are by far the most dominant class of phenolic compounds isolated from Morus alba leaves (MAL). Other classes of compounds are benzofurans, phenolic acids, alkaloids, coumarins, chalcones and stilbenes. Major flavonoids are kuwanons, moracinflavans, moragrols and morkotins. Other major compounds include moracins (benzofurans), caffeoylquinic acids (phenolic acids) and morachalcones (chalcones). Research on the anticancer properties of MAL entailed in vitro and in vivo cytotoxicity of extracts or isolated compounds. Flavonoids, benzofurans, chalcones and alkaloids are classes of compounds from MAL that have been found to be cytotoxic towards human cancer cell lines. Further studies on the phytochemistry and anticancer of MAL are suggested. Sources of information were PubMed, PubMed Central, ScienceDirect, Google, Google Scholar, J-Stage, PubChem and China National Knowledge Infrastructure.
  18. Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S
    Nutr Metab (Lond), 2016;13:65.
    PMID: 27708685 DOI: 10.1186/s12986-016-0123-9
    Metabolic syndrome (MetS) consists of several medical conditions that collectively predict the risk for cardiovascular disease better than the sum of individual conditions. The risk of developing MetS in human depends on synergy of both genetic and environmental factors. Being a multifactorial condition with alarming rate of prevalence nowadays, establishment of appropriate experimental animal models mimicking the disease state in humans is crucial in order to solve the difficulties in evaluating the pathophysiology of MetS in human. This review aims to summarize the underlying mechanisms involved in the pathophysiology of dietary, genetic, and pharmacological models of MetS. Furthermore, we will discuss the usefulness, suitability, pros and cons of these animal models. Even though numerous animal models of MetS have been established, further investigations on the invention of new animal model and clarification of plausible mechanisms are still necessary to confer a better understanding to researchers on the selection of animal models for their studies.
  19. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links