Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Fan SP, Jiang LQ, Chia CH, Fang Z, Zakaria S, Chee KL
    Bioresour Technol, 2014 Feb;153:69-78.
    PMID: 24342947 DOI: 10.1016/j.biortech.2013.11.055
    Recent years, great interest has been devoted to the conversion of biomass-derived carbohydrate into sugars, such as glucose, mannose and fructose. These are important versatile intermediate products that are easily processed into high value-added biofuels. In this work, microwave-assisted dilute sulfuric acid hydrolysis of deproteinated palm kernel cake (DPKC) was systematically studied using Response Surface Methodology. The highest mannose yield (92.11%) was achieved at the optimized condition of 148°C, 0.75N H2SO4, 10min 31s and substrate to solvent (SS) ratio (w/v) of 1:49.69. Besides that, total fermentable sugars yield (77.11%), was obtained at 170°C, 0.181N H2SO4, 6min 6s and SS ratio (w/v) of 1:40. Ridge analysis was employed to further verify the optimum conditions. Thus, this work provides fundamental data of the practical use of DPKC as low cost, high yield and environmental-friendly material for the production of mannose and other sugars.
  2. Sivalingam M, Looi ML, Zakaria SZ, Hamidah NH, Alias H, Latiff ZA, et al.
    Int J Lab Hematol, 2012 Aug;34(4):377-82.
    PMID: 22335963 DOI: 10.1111/j.1751-553X.2012.01405.x
    INTRODUCTION: To study the ß-gene mutations spectrum, the genotype/phenotype correlation, the modulatory effect of co-inherited factors such as α-gene mutations and of Xmn1 polymorphism in a large cohort of Malaysian patients.
    METHODS: A total of 264 cases clinically diagnosed as Thalassemia major (TM) (111), Thalassemia intermedia (21), HbE-β Thalassemia (131), and 1 HbE homozygous were studied. The detection of α and ß gene mutations and characterization of Xmn1 polymorphism were performed by multiplex PCR, amplification refractory mutation system (ARMS), DNA sequencing, and restriction fragment length polymorphism (RFLP)-PCR.
    RESULTS: A total of 19 ß Thalassemia mutations were characterized. CD26 and CD41/42 were the most common found in the Malay and Chinese population, respectively. The sensitivity of the clinical diagnosis for β TM, thalassemia intermedia, and HbE/β thalassemia was 94.0%, 15.2%, and 89.2%, respectively. Patients with Xmn1 heterozygosity [+/-] required less frequent transfusion compared with those without the polymorphism. Co-inheritance of α-thalassemia alleviates the severity of HbE-β thalassemia in our cohort.
    CONCLUSION: Molecular analysis should be used for a better diagnosis and management of β thalassemia.
  3. Alshagga MA, Mohamed N, Nazrun Suhid A, Abdel Aziz Ibrahim I, Zulkifli Syed Zakaria S
    Arch Med Sci, 2011 Aug;7(4):572-8.
    PMID: 22291790 DOI: 10.5114/aoms.2011.24123
    Glutathione S-transferase (GST) is a xenobiotic metabolising enzyme (XME), which may modify susceptibility in certain ethnic groups, showing ethnic dependent polymorphism. The aim of this study was to determine GSTM1, GSTM3 and GSTT1 gene polymorphisms in a Malaysian population in Kuala Lumpur.
  4. Fan SP, Zakaria S, Chia CH, Jamaluddin F, Nabihah S, Liew TK, et al.
    Bioresour Technol, 2011 Feb;102(3):3521-6.
    PMID: 21123058 DOI: 10.1016/j.biortech.2010.11.046
    Solvolysis of oil palm empty fruit bunches (EFB) fibres using different solvents (acetone, ethylene glycol (EG), ethanol, water and toluene) were carried out using an autoclave at 275°C for 60 min. The solvent efficiency in term of conversion yield was found to be: EG>water>ethanol>acetone>toluene. The liquid products and residue obtained were analyzed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass selectivity. The obtained results showed that the chemical properties of the oil product were significantly affected by the type of solvent used for the solvolysis process. The higher heating value (HHV) of oil products obtained using ethanol is ∼29.42 MJ/kg, which is the highest among the oil products produced using different solvents. Water, ethanol and toluene yield major phenolic compounds. While EG favors the formation of alcohol compounds and acetone yields ketone and aldehyde compounds.
  5. Padzil FN, Zakaria S, Chia CH, Jaafar SN, Kaco H, Gan S, et al.
    Carbohydr Polym, 2015 Jun 25;124:164-71.
    PMID: 25839807 DOI: 10.1016/j.carbpol.2015.02.013
    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system.
  6. Salleh KM, Zakaria S, Sajab MS, Gan S, Chia CH, Jaafar SNS, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1422-1430.
    PMID: 29964115 DOI: 10.1016/j.ijbiomac.2018.06.159
    Dissolved oil palm empty fruit bunch (EFB) cellulose in NaOH/urea solvent was mixed with sodium carboxymethylcellulose (NaCMC) to form a green regenerated superabsorbent hydrogel. The effect of concentration of epichlorohydrin (ECH) as the crosslinker on the formation, physical, and chemical properties of hydrogel was studied. Rapid formation and higher gel content of hydrogel were observed at 10% concentration of ECH. The superabsorbent hydrogel was successfully fabricated in this study with the swelling ability >100,000%. Hydrogel with higher concentration of ECH showed opposite trend by having higher superabsorbent property than that of lower concentration. The covalent bond of COC was observed with Attenuated total reflectance fourier transform infrared (ATR-FT-IR) spectroscopy to confirm the occurrence of crosslinking. The physical and chemical properties of hydrogel were affected by swelling phenomenon. Hydrogel with higher degree of swelling exhibited lower moisture retention and higher transparency. Moreover, the weight of the superabsorbent hydrogel increased with the decrement of pH value of external media (distilled water). This study provided substantial information on the effect of different percentage of ECH as crosslinker on hydrogel basic properties. Furthermore, this study affords correlation of many essential driving forces that affected hydrogel superabsorbent property.
  7. James Antony JJ, Zakaria S, Zakaria R, Anak Ujang J, Othman N, Subramaniam S
    Physiol Mol Biol Plants, 2019 Nov;25(6):1457-1467.
    PMID: 31736548 DOI: 10.1007/s12298-019-00703-2
    Dendrobium Sabin Blue is an important orchid hybrid that has been grown extensively as cut flower, potted plant and is also popular for its deep purplish blue flowers.  The most efficient long term conservation method of this hybrid is through cryopreservation. Cryopreservation involving the vitrification method consists of explants exposure to highly concentrated cryoprotective solution followed by freezing rapidly in liquid nitrogen. However, these treatments involved highly concentrated cryoprotectant that could incur toxicity to the explants. Hence, cryopreservation protocol requires biochemical analyses in understanding the damages or injuries occurred during cryopreservation treatments. In this study, biochemical analyses revealed a general reduction in chlorophyll, carotenoid and porphyrin content to 0.40 µg/g F W (thawing stage), 31.50 µg/g F W unloading stage and 2230.41 µg/g F W (thawing stage), respectively in comparison to the control treatments. In addition, increased level in proline content were obtained at different cryopreservation stages with highest level (5.42 µmole/g F W) recorded at the PVS2 dehydration stage. Fluctuated outcomes were obtained in catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POX) enzyme activities in PLBs exposed to different cryopreservation stages. Lowest values recorded for CAT enzyme activity were obtained at the dehydration stage (3.94 U/g). Lowest POX enzyme activities were obtained at the dehydration (122.36 U/g) and growth recovery (106.40 U/g) stages. Additionally, lowest APX enzyme activities values were recorded at the thawing (7.47 U/g) and unloading (7.28 U/g) stages. These have contributed to low regeneration of Dendrobium Sabin Blue protocorm like bodies (PLBs) following cryopreservation. Hence, in the future experimental design, exogenous antioxidant could be included in the cryopreservation procedures to improve the existing protocol.
  8. Salleh KM, Zakaria S, Gan S, Baharin KW, Ibrahim NA, Zamzamin R
    Int J Biol Macromol, 2020 Apr 01;148:11-19.
    PMID: 31893531 DOI: 10.1016/j.ijbiomac.2019.12.240
    Dissolved oil palm empty fruit bunch cellulose (EFBC) and sodium carboxymethylcellulose (NaCMC) were chemically crosslinked with epichlorohydrin (ECH) to generate designated hydrogel. After swelling process in distilled water, the swollen hydrogel was frozen and freeze-dried to form cryogel. The swelling phenomenon of hydrogel during the absorption process gave substantial effects on thinning of crosslinked network wall, pore size and volume, steadiness of cryogel skeletal structure, and re-swelling of cryogel. The swelling effects on hydrogel were confirmed via microscopic study using variable pressure scanning electron microscope (VPSEM). From the retrieved VPSEM images, nano-thin crosslinked network wall of 24.31 ± 1.97 nm and interconnected pores were observed. As a result, the amount of water, the swelling degree, and the freeze-drying process indirectly affected the VPSEM images that indicated pore size and volume, formation of interconnected pores, and re-swelling of cryogel. This study determined the intertwined factors that affected both hydrogel and cryogel properties by investigating the swelling phenomenon and its ensuing effects.
  9. Hashimi AS, Nohan MANM, Chin SX, Khiew PS, Zakaria S, Chia CH
    Nanomaterials (Basel), 2020 Jun 12;10(6).
    PMID: 32545513 DOI: 10.3390/nano10061153
    : Hydrogen (H2) is a clean energy carrier which can help to solve environmental issues with the depletion of fossil fuels. Sodium borohydride (NaBH4) is a promising candidate material for solid state hydrogen storage due to its huge hydrogen storage capacity and nontoxicity. However, the hydrolysis of NaBH4 usually requires expensive noble metal catalysts for a high H2 generation rate (HGR). Here, we synthesized high-aspect ratio copper nanowires (CuNWs) using a hydrothermal method and used them as the catalyst for the hydrolysis of NaBH4 to produce H2. The catalytic H2 generation demonstrated that 0.1 ng of CuNWs could achieve the highest volume of H2 gas in 240 min. The as-prepared CuNWs exhibited remarkable catalytic performance: the HGR of this study (2.7 × 1010 mL min-1 g-1) is ~3.27 × 107 times higher than a previous study on a Cu-based catalyst. Furthermore, a low activation energy (Ea) of 42.48 kJ mol-1 was calculated. Next, the retreated CuNWs showed an outstanding and stable performance for five consecutive cycles. Moreover, consistent catalytic activity was observed when the same CuNWs strip was used for four consecutive weeks. Based on the results obtained, we have shown that CuNWs can be a plausible candidate for the replacement of a costly catalyst for H2 generation.
  10. Zhang J, Li Y, Wu H, Wang C, Salleh KM, Li H, et al.
    Polymers (Basel), 2022 Oct 22;14(21).
    PMID: 36365467 DOI: 10.3390/polym14214473
    This study aimed to develop a safe and advanced antibacterial material of electrospun microfiber membranes (MFMs) for wound dressings. Combinations of several materials were investigated; thermal treatment and electrospinning techniques were used to form the best quality of MFMs to suit its end applications. By comparing the fiber morphology, diameter changes, and fracture strength, the suitable ratio of raw materials and thermal treatment were obtained before and after adding Trition X-100 as a surfactant for MFMs of sodium alginate/polyvinyl alcohol/polyethylene oxide (SA/PVA/PEO). The electrospinning solution was mixed with berberine as an antibacterial substance; meanwhile, calcium chloride (CaCl2) was used as the crosslinking agent. The antibacterial properties, water dissolution resistance, water content, and fracture strength were thoroughly investigated. The results showed that the antibacterial rates of MFMs with different mass fractions of berberine (0, 3, and 5 wt.%) to Escherichia coli (E. coli) were 14.7, 92.9, and 97.2%, respectively. The moisture content and fracture strength of MFMs containing 5 wt.% berberine were 72.0% and 7.8 MPa, respectively. In addition, the produced MFMs embodied great water dissolution resistance. Berberine-loaded SA/PVA/PEO MFMs could potentially serve as an antibacterial wound dressing substrate with low cost and small side effects.
  11. Chin SX, Lau KS, Zakaria S, Chia CH, Wongchoosuk C
    Polymers (Basel), 2022 Nov 27;14(23).
    PMID: 36501560 DOI: 10.3390/polym14235165
    Wastewater generated from industries seriously impacts the environment. Conventional biological and physiochemical treatment methods for wastewater containing organic molecules have some limitations. Therefore, identifying other alternative methods or processes that are more suitable to degrade organic molecules and lower chemical oxygen demand (COD) in wastewater is necessary. Heterogeneous Fenton processes and persulfate (PS) oxidation are advanced oxidation processes (AOPs) that degrade organic pollutants via reactive radical species. Therefore, in this study, limonite powder was incorporated into porous regenerated chitosan fibers and further used as a heterogeneous catalyst to decompose methylene blue (MB) via sulfate radical-based AOPs. Limonite was used as a heterogeneous catalyst in this process to generate the persulfate radicals (SO4-·) that initiate the decolorization process. Limonite-chitosan fibers were produced to effectively recover the limonite powder so that the catalyst can be reused repeatedly. The formation of limonite-chitosan fibers viewed under a field emission scanning electron microscope (FESEM) showed that the limonite powder was well distributed in both the surface and cross-section area. The effectiveness of limonite-chitosan fibers as a catalyst under PS activation achieved an MB decolorization of 78% after 14 min. The stability and reusability of chitosan-limonite fibers were evaluated and measured in cycles 1 to 10 under optimal conditions. After 10 cycles of repeated use, the limonite-chitosan fiber maintained its performance up to 86%, revealing that limonite-containing chitosan fibers are a promising reusable catalyst material.
  12. Chopra L, Thakur KK, Chohan JS, Sharma S, Ilyas RA, Asyraf MRM, et al.
    Materials (Basel), 2022 Mar 24;15(7).
    PMID: 35407737 DOI: 10.3390/ma15072404
    The hydrogels responding to pH synthesized by graft copolymerization only and then concurrent grafting and crosslinking of monomer N-isopropyl acrylamide (NIPAAM) and binary comonomers acrylamide, acrylic acid and acrylonitrile (AAm, AA and AN) onto chitosan support were explored for the percent upload and release study for anti-inflammatory diclofenac sodium drug (DS), w.r.t. time and pH. Diclofenac sodium DS was seized in polymeric matrices by the equilibration process. The crosslinked-graft copolymers showed the highest percent uptake than graft copolymers (without crosslinker) and chitosan itself. The sustainable release of the loaded drug was studied with respect to time at pH 2.2, 7.0, 7.4 and 9.4. Among graft copolymers (without crosslinking), Chit-g-polymer (NIPAAM-co-AA) and Chit-g-polymer (NIPAAM-co-AN) exhibited worthy results for sustainable drug deliverance, whereas Crosslink-Chit-g-polymer (NIPAAM-co-AA) and Crosslink-Chit-g-polymer (NIPAAM-co-AAm) presented the best results for controlled/sustained release of diclofenac sodium DS with 93.86 % and 96.30 % percent release, respectively, in 6 h contact time. Therefore, the grafted and the crosslinked graft copolymers of the chitosan showed excellent delivery devices for the DS with sustainable/prolonged release in response to pH. Drug release kinetics was studied using Fick’s law. The kinetic study revealed that polymeric matrices showed the value of n as n > 1.0, hence drug release took place by non-Fickian diffusion. Hence, the present novel findings showed the multidirectional drug release rate. The morphological changes due to interwoven network structure of the crosslinked are evident by the Scanning electron microscopy (SEM) analysis.
  13. Gan S, Zakaria S, Chia CH, Chen RS, Ellis AV, Kaco H
    PLoS One, 2017;12(3):e0173743.
    PMID: 28296977 DOI: 10.1371/journal.pone.0173743
    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet-visible (UV-Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products.
  14. Jafri NF, Mohd Salleh K, Ahmad Ghazali N, Nyak Mazlan NS, Ab Halim NH, Zakaria S
    Int J Biol Macromol, 2023 Sep 18;253(Pt 4):126971.
    PMID: 37729993 DOI: 10.1016/j.ijbiomac.2023.126971
    To date, the utilization of carboxymethyl cellulose (CMC) fibers are only restricted to weak mechanical application such as wound dressing. Physically, CMC has a weak mechanical strength due to the high hydrophilicity trait. However, this flaw was saved by the extensive number of reactive functional groups, allowing this macromolecule to form linkages with chitosan to ensure its versatility. This work successfully fabricated CMC-chitosan fiber via dissolution, crosslinking, dry-jet wet-spinning extrusion, and coagulation processes. Chitosan was constituted with CMC fiber in two approaches, coating, and inclusion at various concentrations. Morphologically, chitosan incorporation has triggered agglomerations and roughness toward CMC fibers (CMCF). Chemically, the interaction between CMC and chitosan was proved through FTIR analysis at peaks 1245 cm-1 (ECH covalent crosslinking), while 3340 cm-1 and 1586 cm-1 were due to ionic and hydrogen bonding. The result from analysis showed that at higher chitosan concentrations, the chitosan-included CMC fiber (CMCF-I) and chitosan-coated CMC fiber (CMFC) were mechanically enhanced (up to 86.77 and 82.72 MPa), thermally more stable (33 % residual mass), and less hydrophilic compared to the plain CMCF. The properties of CMC-chitosan fibers have opened up vast possible applications, especially as a reinforcement in a watery medium such as a hydrogel.
  15. Hashimi AS, Nohan MANM, Chin SX, Zakaria S, Chia CH
    Nanomaterials (Basel), 2019 Jun 28;9(7).
    PMID: 31261696 DOI: 10.3390/nano9070936
    Copper nanowires (CuNWs) with a high aspect ratio of ~2600 have been successfully synthesized by using a facile hydrothermal method. The reductions of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and methylene blue (MB) to leucomethylene blue (LMB) by using sodium borohydride (NaBH4) were used as models to test the catalytic activity of CuNWs. We showed that by increasing the CuNWs content, the rate of reduction increased as well. The CuNWs showed an excellent catalytic performance where 99% reduction of 4-NP to 4-AP occurred in just 60 s by using only 0.1 pg of CuNWs after treatment with glacial acetic acid (GAA). The rate constant (kapp) and activity factor (K) of this study is 18 and ~1010 fold in comparison to previous study done with no GAA treatment applied, respectively. The CuNWs showed an outstanding catalytic activity for at least ten consecutive reusability tests with a consistent result in 4-NP reduction. In clock reaction of MB, approximately 99% of reduction of MB into LMB was achieved in ~5 s by using 2 μg CuNWs. Moreover, the addition of NaOH can improve the rate and degree of recolorization of LMB to MB.
  16. Gan S, Zakaria S, Salleh KM, Anuar NIS, Moosavi S, Chen RS
    Int J Biol Macromol, 2020 Apr 24;158:552-561.
    PMID: 32335111 DOI: 10.1016/j.ijbiomac.2020.04.166
    Under hydrothermal condition, kenaf cellulose carbamate (KCC) was synthesized using urea and kenaf core pulp (KCP) without catalyst and organic solvent. The KCC was prepared with various urea/KCP ratios (2:1, to 4:1 and 6:1) with the aid of autoclave and oil bath, whereas the regenerated KCC membranes were formed via solution casting method. The physical and thermal properties of KCC were studied. The urea/KCP ratio used in preparing KCC corresponds with the nitrogen percentage obtained in KCC. The formation of the regenerated KCC membranes could be confirmed by the existence of cellulose II through X-ray diffraction (XRD) study. As examined by Field emission scanning electron microscope (FESEM), the regenerated KCC membranes possessed the greater pore size structures at higher urea concentration. Mechanical results showed the tensile strength and modulus of regenerated KCC membranes have improved up to 43.4% and 76.9%, respectively, as compared to native KCP membrane. It can be concluded from the findings that synthesizing KCC and its membranes with improved mechanical properties has broad prospects for potential industrial applications such as biomembranes and packaging materials.
  17. Jamaluddin NAN, Jasmani L, Md Pisar M, Adnan S, Rusli R, Zakaria S
    Carbohydr Polym, 2024 Oct 15;342:122405.
    PMID: 39048240 DOI: 10.1016/j.carbpol.2024.122405
    Nanofibrillated cellulose (NFC) has found extensive potential and existing utilizations across various industries. Nonetheless, a notable constraint of NFC lies in its inherent hydrophilic nature, which restricts its suitability for non-aqueous application. This study aims at synthesising hydrophobic NFC through a two-step surface modification by reacting NFC with tannic acid and amine group. The study also investigated the effect of using various alkylamines on the properties of modified NFC. The hydrophobic NFC was characterized using various analytical techniques namely Thermogravimetric Analysis (TGA), X-Ray Diffraction analysis (XRD), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, and contact angle measurements. The present study also looked into the possible use of modified NFC as a pharmaceutical excipient for the delivery of water insoluble curcumin. The analysis of curcumin binding onto the modified NFC was conducted using UV-Visible spectrophotometry. The findings from the study indicated that the modified NFC effectively bound a substantial quantity of curcumin (80 % - 87 %) and the binding varied for samples of different degree of substitution.
  18. Salleh KM, Zakaria S, Armir NAZ, Khairunnisa-Atiqah MK, Wang B
    Int J Biol Macromol, 2024 Aug 16.
    PMID: 39154673 DOI: 10.1016/j.ijbiomac.2024.134816
    The hydrogel regeneration process, involving various cellulose types, results in distinct chemical bonding patterns. Even minor variations in chemical interactions among polymers during regeneration significantly impact properties like hydrogel-forming ability, hydrophilicity, and swelling capacity. This study focuses on regenerating a superabsorbent hydrogel from the interplay of native empty fruit bunch cellulose (EFBC), sodium carboxymethyl cellulose (NaCMC), and hydroxyethyl cellulose (HEC) using epichlorohydrin (ECH) as a crosslinker. The hydrogel was formed from dissolved EFBC solutions in an aqueous NaOH/urea solvent, supplemented with different NaCMC and HEC weight ratios, and ECH chemically assisted the crosslinking process. EFBC provides the hydrogel's supporting skeletal structure, while NaCMC and HEC play vital roles in enhancing forming ability and its physical and mechanical properties through diverse chemical interactions based on their electrovalent properties. Notably, NaCMC imparts hydrophilicity, while HEC indirectly improves superabsorbent properties through the enhancement of the elastic network's retraction force. Hydrogels combining NaCMC and HEC show a remarkable water absorption capacity exceeding 30,000 %, surpassing those regenerated solely with EFBC and NaCMC. The highest swelling, over 130,000 %, is achieved with 0.75 % NaCMC and 0.25 % HEC. Regarding thermal stability, hydrogels with a higher NaCMC proportion outperform those with increased HEC content. The study highlights the critical role of tailored chemical interactions in successfully regenerating an improved superabsorbent hydrogel with enhanced water absorption properties.
  19. Zainul Armir NA, Zulkifli A, Gunaseelan S, Palanivelu SD, Salleh KM, Che Othman MH, et al.
    Polymers (Basel), 2021 Oct 18;13(20).
    PMID: 34685346 DOI: 10.3390/polym13203586
    Cellulose is one of the most abundant natural polymers with excellent biocompatibility, non-toxicity, flexibility, and renewable source. Regenerated cellulose (RC) products result from the dissolution-regeneration process risen from solvent and anti-solvent reagents, respectively. The regeneration process changes the cellulose chain conformation from cellulose I to cellulose II, leads the structure to have more amorphous regions with improved crystallinity, and inclines towards extensive modification on the RC products such as hydrogel, aerogel, cryogel, xerogel, fibers, membrane, and thin film. Recently, RC products are accentuated to be used in the agriculture field to develop future sustainable agriculture as alternatives to conventional agriculture systems. However, different solvent types and production techniques have great influences on the end properties of RC products. Besides, the fabrication of RC products from solely RC lacks excellent mechanical characteristics. Thus, the flexibility of RC has allowed it to be homogenously blended with other materials to enhance the final products' properties. This review will summarize the properties and preparation of potential RC-based products that reflect its application to replace soil the plantation medium, govern the release of the fertilizer, provide protection on crops and act as biosensors.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links