Displaying publications 21 - 40 of 57 in total

Abstract:
Sort:
  1. Chandru K, Zakaria MP, Anita S, Shahbazi A, Sakari M, Bahry PS, et al.
    Mar Pollut Bull, 2008 May;56(5):950-62.
    PMID: 18328505 DOI: 10.1016/j.marpolbul.2008.01.028
    The East Coast of Peninsular Malaysia faces the South China Sea and is vulnerable to oil pollution because of intense petroleum production activities in the area. The South China Sea is also a favored route for supertankers carrying crude oil to the Far East. Consequently, oil spills can occur, causing pollution and contamination in the surrounding areas. Residual oil spills stranded on coastal beaches usually end up as tar-balls. Elucidating the sources of tar-balls using a molecular marker approach is essential in assessing environmental impacts and perhaps settling legal liabilities for affected parties. This study utilizes a multimodal molecular marker approach through the use of diagnostic ratios of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) to determine the source, distribution and weathering of tar-balls. Hopane ratios (e.g., C29/C30, and summation C31-C35/C30 ratios) were used to identify the sources of tar-balls. The weathering effects were distinguished by using alkanes, namely the unresolved complex mixture (UCM) and low molecular weight/high molecular weight (L/H) ratios. Similarly, PAHs were also used for the determination of weathering processes undergone by the tar-balls. This multimodal molecular marker gave a very strong indication of the sources of tar-balls in this study. For example, 16 out of 17 samples originated from South East Asian Crude Oil (SEACO) with one sample from Merang, Terengganu originating from North Sea Oil (Troll). The TRME-2 sample may have come from a supertanker's ballast water discharge. The second possibility is that the tar-ball may have been transported via oceanographic currents. All 'weathered' sample characterizations were based on the presence of UCM and other ratios. The multimodal molecular marker approach applied in this study has enabled us to partially understand the transport behavior of tar-balls in the marine environment and has revealed insights into the weathering process of tar-balls.
  2. Isobe T, Takada H, Kanai M, Tsutsumi S, Isobe KO, Boonyatumanond R, et al.
    Environ Monit Assess, 2007 Dec;135(1-3):423-40.
    PMID: 17370135
    A comprehensive monitoring survey for polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals (EDCs) utilizing mussels as sentinel organisms was conducted in South and Southeast Asia as a part of the Asian Mussel Watch project. Green mussel (Perna viridis) samples collected from a total of 48 locations in India, Indonesia, Singapore, Malaysia, Thailand, Cambodia, Vietnam, and the Philippines during 1994-1999 were analyzed for PAHs, EDCs including nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), and linear alkylbenzenes (LABs) as molecular markers for sewage. Concentrations of NP ranged from 18 to 643 ng/g-dry tissue. The highest levels of NP in Malaysia, Singapore, the Philippines, and Indonesia were comparable to those observed in Tokyo Bay. Elevated concentrations of EDCs were not observed in Vietnam and Cambodia, probably due to the lower extent of industrialization in these regions. No consistent relationship between concentrations of phenolic EDCs and LABs were found, suggesting that sewage is not a major source of EDCs. Concentrations of PAHs ranged from 11 to 1,133 ng/g-dry, which were categorized as "low to moderate" levels of pollution. The ratio of methylphenanthrenes to phenanthrene (MP/P ratio) was >1.0 in 20 out of 25 locations, indicating extensive input of petrogenic PAHs. This study provides a bench-mark for data on the distribution of anthropogenic contaminants in this region, which is essential in evaluating temporal and spatial variation and effect of future regulatory measures.
  3. Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, Kasim MF
    Mar Pollut Bull, 2013 Apr 15;69(1-2):55-66.
    PMID: 23452623 DOI: 10.1016/j.marpolbul.2013.01.009
    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia.
  4. Nkem BM, Halimoon N, Yusoff FM, Johari WLW, Zakaria MP, Medipally SR, et al.
    Mar Pollut Bull, 2016 Jun 15;107(1):261-268.
    PMID: 27085593 DOI: 10.1016/j.marpolbul.2016.03.060
    In this study, we isolated two indigenous hydrocarbon-degrading bacteria from tarball found in Rhu Sepuluh beach, Terengganu, Malaysia. These bacteria were identified based on their physiological characteristic and 16S rRNA gene sequence analysis, and they showed 99% similarity with Cellulosimicrobium cellulans DSM 43879 and Acinetobacter baumannii ATCC 19606 respectively. Their hydrocarbon-degrading capabilities were tested using diesel-oil as sole carbon source. Results analysed using GC-MS, showed diesel-oil alkanes were degraded an average 64.4% by C. cellulans and 58.1% by A. baumannii with medium optical density reaching 0.967 (C. cellulans) and 1.515 (A. baumannii) in minimal salt media at 32°C for 10days. Individual diesel-oil alkanes were degraded between 10%-95.4% by C. cellulans and 0.2%-95.9% by A. baumannii. Both strains utilized diesel-oil for growth. The study suggests both strains are part of indigenous hydrocarbon-degrading bacteria in tarball with potential for bioremediation of oil-polluted marine environment.
  5. Mohebbi-Nozar SL, Zakaria MP, Ismail WR, Mortazawi MS, Salimizadeh M, Momeni M, et al.
    Mar Pollut Bull, 2015 Jun 15;95(1):407-11.
    PMID: 25843439 DOI: 10.1016/j.marpolbul.2015.03.037
    To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended.
  6. Tsutsumi S, Yamaguchi Y, Nishida I, Akiyama K, Zakaria MP, Takada H
    Mar Pollut Bull, 2002;45(1-12):325-31.
    PMID: 12398403
    Alkylbenzenes, molecular markers of sewage, were measured in 34 green mussels collected from India, Indonesia, Malaysia, Thailand, Cambodia, Vietnam, and the Philippines together with blue mussels collected from Tokyo Bay, Japan. Linear alkylbenzene (LAB) concentrations in South and South East Asian countries ranged from 10 to 1,640 ng-sigmaLAB/g-dry tissue. In some populous cities, LAB concentrations were similar or higher than those found in northern Tokyo Bay which is heavily impacted by sewage effluents. I/E ratios (a ratio of internal to external isomers of LABs) in the South and South East Asian countries (1-3) were much lower than those in Tokyo Bay (3-8), indicating sewage discharged in the coastal zone is poorly treated (e.g., raw sewage and/or primary effluents). Alkylbenzenes with branched alkyl chains, tetrapropylene-based alkylbenzenes, were also detected in mussels from Indonesia and Philippines. This "tell-tale" sign indicates that poorly degradable detergents are still in use in this area, although they have long been phased-out in many industrialized countries.
  7. Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, et al.
    Environ Sci Technol, 2002 May 1;36(9):1907-18.
    PMID: 12026970
    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.
  8. Isobe KO, Tarao M, Zakaria MP, Chiem NH, Minh le Y, Takada H
    Environ Sci Technol, 2002 Nov 1;36(21):4497-507.
    PMID: 12433157
    This is the first report on fecal pollution using molecular markers in Southeast Asia where serious sewage pollution has occurred. A simple and sensitive analytical method using gas chromatography-mass spectrometry for 10 sterols in various environmental samples was developed to monitor extensive areas of tropical Asia. First, the method was applied to wastewater to confirm that >95% of sterols existed in the particulate phase. Then the approach was applied to a tropical Asian region, Malaysia and Vietnam, with a selection of 59 sampling stations in total. River water and sediment samples were collected and analyzed for chemical markers (coprostanol and other sterols) and microbiological markers (fecal coliforms and fecal streptococci). Particulate coprostanol concentrations ranged from <0.0001 to 13.47 microg/L in tropical river and estuarine waters, indicating severe fecal pollution in populous areas. Coprostanol concentrations in the sediments ranged from 0.005 to 15.5 microg/g-dry. The sedimentary coprostanol concentrations were lower than those reported in some urban areas of industrialized countries. This is probably because frequent heavy rain induces intensive input of eroded soil, which dilutes fecal material in river sediments. The relationship between the concentrations of fecal sterols and bacterial indicators was examined in an attempt to develop public health criteria for coprostanol levels applicable to the tropical region. Coprostanol concentrations of 30-100 ng/L or percent coprostanol levels of 2% corresponded to approximately 1000 fecal coliforms per 100 mL, which is set for secondary contact limit in many countries. These coprostanol concentrations were lower than those proposed as criteria in temperate countries, probably owing to greater survival of bacteria in warmer tropical waters. On the basis of these criteria, extensive monitoring of sediments suggests that poor sanitary conditions exist in most of the urbanized area of Malaysia and in several urban and rural sites in Vietnam.
  9. Safaei Khorram M, Zhang G, Fatemi A, Kiefer R, Maddah K, Baqar M, et al.
    J Sci Food Agric, 2019 Mar 15;99(4):1862-1869.
    PMID: 30264414 DOI: 10.1002/jsfa.9380
    BACKGROUND: Numerous studies have addressed the positive effects of organic amendments on soil and plant productivity under short-term field studies. However, to date, few studies have been conducted on the effects of organic amendment on the orchards where high nutrient bioavailability is required. This study deals with the effects of biochar and compost on soil quality, growth and yield of a replanted apple orchard in the northeast of Iran.

    RESULTS: Biochar+compost application resulted in 37% and 300% higher soil total organic carbon and available phosphorus content, respectively, during the first 3 years of experimentation compared to control. Similarly, trunk diameter and shoot number of apple trees increased 23-26% by the end of the first year. Nevertheless, there were no significant changes in fruitfulness, fruit weight or starch pattern index as productivity indices.

    CONCLUSION: Biochar and compost were beneficial in improving soil quality, mainly by increasing soil nutrient content and decreasing soil bulk density, and in increasing plant growth at early growth stages of apple orchards. However, they failed to enhance overall yield and fruit quality, most likely due to their limited ability to suppress apple replant disease. © 2018 Society of Chemical Industry.

  10. Alkhadher SAA, Kadir AA, Zakaria MP, Al-Gheethi A, Asghar BHM
    Mar Pollut Bull, 2020 May;154:111115.
    PMID: 32319929 DOI: 10.1016/j.marpolbul.2020.111115
    The current study aimed to develop a suitable molecular marker [Linear alkylbenzenes (LABs)] approach for pollution determination in mangrove oysters of peninsular Malaysia. C. belcheri species were collected from rivers of Merbok, Perai, Klang, Muar and PulauMerambong (An Island). The LABs were extracted from C. belcheri and determined using GC-MS. The LABs indices which included I/E, L/S and C13/C12 were applied to describe the sources and biodegradation of LABs. The results revealed that the maximum concentrations were detected in oysters from Klang (27.91 ng g-1dw), while the lowest concentrations were detected in oysters from Merbok (8.12 ng g-1dw). Moreover, I/E ratios varied between 2.83 and 6.40, indicating the secondary treatment effluents being discharged to coastal zones. The results of this study suggested that the oysters absorbed LABs mainly in dissolved phase. Therefore, mangrove oysters are a good biosensor for LABs contamination in the aquatic environment.
  11. Nurulhuda K, Gaydon DS, Jing Q, Zakaria MP, Struik PC, Keesman KJ
    J Sci Food Agric, 2018 Feb;98(3):865-871.
    PMID: 28940491 DOI: 10.1002/jsfa.8683
    Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  12. Safaei Khorram M, Zhang G, Fatemi A, Kiefer R, Mahmood A, Jafarnia S, et al.
    Environ Sci Pollut Res Int, 2020 May;27(15):18510-18520.
    PMID: 32198685 DOI: 10.1007/s11356-020-08335-w
    The introduction of biochar has been extensively tested under short-term greenhouse or field studies mainly in sandy or acidic soils, while its effects on soil properties, crop plants, and weed species especially in neutral or alkaline soils are still not well understood. Therefore, this study focused on relatively long effects of two walnut shell biochars (5 t ha-1) on soil nutrient dynamics, two crop plants (wheat and lentil) growth and developments, and weed growth dynamics over 4 years (2014-2017). Applied biochar added once at the beginning of the experiment while planted crops were supplied with macro-nutrients and sprayed with pesticides according to conventional requirements of the region. Biochars improved soil properties by 10-23% during the first and second years while positive effects of biochars on weed growth were drastically higher (60-78% higher weed density) during the whole period of this study most likely due to increase in bioavailability of nutrient shortly after biochar amendment and indirect positive effects of biochars on soil physical properties as well. Consequently, biochar macro- and micro-nutrient will be utilized by weed plants with higher efficacy compared with crop plants.
  13. Keshavarzifard M, Zakaria MP, Hwai TS, Yusuff FM, Mustafa S
    Environ Sci Pollut Res Int, 2015 Jun;22(12):9424-37.
    PMID: 25604562 DOI: 10.1007/s11356-015-4093-7
    In this study, the distributions and sources of sediment-associated polycyclic aromatic hydrocarbons (PAHs) and hopanes in the Malaysian rivers and estuaries were evaluated. The concentrations of 16 USEPA PAHs varied from 225.5 to 293.9 (Perlis River), 195.2 to 481.2 (Kedah River), 791.2 to 1995.4 (Merbok River), 231.2 to 426.7 (Perak River), and 3803.2 to 7442.7 ng g(-1) (Klang River) dry weight. PAHs can be classified as moderate in the Perlis, Kedah, and Perak Rivers, moderate to high in the Merbok River, and high to very high in the Klang River. The comparison of PAHs with sediment quality guidelines (SQGs) indicates that occasionally adverse biological effects may occur from total PAHs, low molecular weight (LMW), and high molecular weight (HMW) PAHs at stations 1, 2, and 3 of the Klang River and from total PAHs at station 2 of the Merbok River. The diagnostic ratios of individual PAHs indicate both petrogenic and pyrogenic origin PAHs with significant dominance of pyrogenic sources in the study areas. The results suggest that Malaysian sediments had hopane ratios (C29/C30) similar to MECO suggesting MECO as a major source of the petroleum hydrocarbons found in the sediments, which is consistent with results reported in previous studies. These findings demonstrate that effective and improved environmental regulations in Malaysia have shifted the source of petroleum hydrocarbons from petrogenic to pyrogenic origin.
  14. Alkhadher SAA, Sidek LM, Zakaria MP, A Al-Garadi M, Suratman S
    Environ Geochem Health, 2024 Mar 15;46(4):140.
    PMID: 38488953 DOI: 10.1007/s10653-024-01916-5
    Organic pollution continues to be an important worldwide obstacle for tackling health and environmental concerns that require ongoing and prompt response. To identify the LAB content levels as molecular indicators for sewage pollution, surface sediments had obtained from the South region of Malaysia. The origins of the LABs were identified using gas chromatography-mass spectrometry (GC-MS). ANOVA and a Pearson correlation coefficient at p 
  15. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.
    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.
    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.
    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.
  16. Alsalahi MA, Latif MT, Ali MM, Dominick D, Khan MF, Mustaffa NI, et al.
    Mar Pollut Bull, 2015 Apr 15;93(1-2):278-83.
    PMID: 25682566 DOI: 10.1016/j.marpolbul.2015.01.011
    This study aims to determine the concentration of sterols used as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. Samples were collected during different seasons through the use of a rotation drum. The analysis of sterols was performed using gas chromatography equipped with a flame ionisation detector (GC-FID). The results showed that the concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L(-1). The total sterol concentration was found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).
  17. Kwan CS, Takada H, Boonyatumanond R, Kato Y, Mizukawa K, Ito M, et al.
    Sci Total Environ, 2014 Feb 1;470-471:427-37.
    PMID: 24140702 DOI: 10.1016/j.scitotenv.2013.09.076
    Historical trends of the accumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in a typical tropical Asian environment were investigated using radio-dated sediment cores from Manila Bay, the Philippines and from the upper Gulf of Thailand. Vertical profiles indicated earlier usage of PCBs than of PBDEs which coincided with their industrial production. The increasing concentrations of total PBDEs and PCBs toward the surface suggested an increased consumption of PBDEs; and possible leakage of PCBs from old machineries into the aquatic environment in recent years. Current input of PCBs to the catchment of Manila Bay was supported by the analyses of air samples and plastic resin pellets. The vertical profiles of total PBDEs in the cores (i.e., rapidly increasing concentrations corresponding to the mid-1980s until mid-1990s, followed by a decrease until the early 2000s, and increasing again toward the surface) likely corresponded to the rapid economic growth in Asia in the 1990s, the Asian financial crisis in 1997, and the economic recovery since early 2000s. BDE-209 was predominant especially on the surface layers. BDEs 47 and 99 generally decreased toward the surface, reflecting the phase-out of the technical penta-PBDE products and the regulation by the Stockholm Convention in recent years. Increasing ratios of BDE-202/209, 206/209, 207/209 and decreasing % of BDE-209 down the core layers may provide evidence for the anaerobic debromination of BDE-209 in the sediment cores. Inventories in ng/cm(2) of total PCBs were higher than total PBDEs (92 vs. 34 and 47 vs. 11 in the Philippines; 47 vs. 33 in Thailand). However, the doubling times indicated faster accumulation of total PBDEs (6-7 years) and BDE-209 (6-7.5 years) than of PCBs (8-11 years). Furthermore, the temporal increase in BDE-209 was comparable to or faster than those reported in other water bodies around the world.
  18. Alkhadher SAA, Zakaria MP, Yusoff FM, Kannan N, Suratman S, Keshavarzifard M, et al.
    Mar Pollut Bull, 2015 Dec 15;101(1):397-403.
    PMID: 26478457 DOI: 10.1016/j.marpolbul.2015.10.011
    Sewage pollution is one of major concerns of coastal and shoreline settlements in Southeast Asia, especially Brunei. The distribution and sources of LABs as sewage molecular markers were evaluated in surface sediments collected from Brunei Bay. The samples were extracted, fractionated and analyzed using gas chromatography- mass spectrometry (GC-MS). LABs concentrations ranged from 7.1 to 41.3 ng g(-1) dry weight (dw) in surficial sediments from Brunei Bay. The study results showed LABs concentrations variably due to the LABs intensity and anthropogenic influence along Brunei Bay in recent years. The ratio of Internal to External isomers (I/E ratio) of LABs in sediment samples from Brunei Bay ranged from 0.56 to 2.17 along Brunei Bay stations, indicating that the study areas were receiving primary and secondary effluents. This is the first study carried out to assess the distribution and sources of LABs in surface sediments from Brunei Bay, Brunei.
  19. Vaezzadeh V, Zakaria MP, Shau-Hwai AT, Ibrahim ZZ, Mustafa S, Abootalebi-Jahromi F, et al.
    Mar Pollut Bull, 2015 Nov 15;100(1):311-320.
    PMID: 26323864 DOI: 10.1016/j.marpolbul.2015.08.034
    Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs.
  20. Isobe KO, Zakaria MP, Chiem NH, Minh le Y, Prudente M, Boonyatumanond R, et al.
    Water Res, 2004 May;38(9):2448-58.
    PMID: 15142807
    This paper reports the result of sewage pollution monitoring conducted in South and Southeast Asia during 1998-2003 using linear alkylbenzenes (LABs) as molecular tracers of sewage contamination. Eighty-nine water samples collected from Malaysia, Vietnam, and Japan (Tokyo), and 161 surface sediment samples collected from Tokyo, Thailand, Malaysia, Philippines, Vietnam, Cambodia, Indonesia, and India were analyzed for alkylbenzenes. The concentration range of SigmaLABs in river water particles in Southeast Asia (<0.005-0.913 microg/L) was comparable to or higher than those found in Tokyo (<0.005-0.638 microg/L). I/E ratios (a ratio of internal to external isomers of LABs) in tropical Asian waters were close to the value of LABs in raw sewage ( approximately 1) and much lower than those in secondary effluents (3-5). This suggests that untreated or inadequately treated sewage is discharged into the water. SigmaLABs concentrations in sediments from South and Southeast Asia ranged from <0.002-42.6 microg/g-dry with the highest concentration occurring at several populous cities. Low I/E ratios of the sediments with high SigmaLABs concentrations suggest a heavy load of untreated sewage. Clearly in view of the current data and evidence of the implications of sewage pollution, this paper highlights the necessity of the continuation of water treatment system improvement in tropical Asia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links