Displaying publications 21 - 40 of 106 in total

Abstract:
Sort:
  1. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2008 Jan;71(1):53-7.
    PMID: 18078327
    Ten new indole alkaloids of the aspidofractinine type, in addition to several recently reported indole alkaloids and 20 other known alkaloids, were obtained from the leaf and stem-bark extract of the Malayan Kopsia singapurensis, viz., kopsimalines A-E (1-5), kopsinicine (6), kopsofinone (7), and kopsiloscines H-J (8-10). The structures of these alkaloids were determined using NMR and MS analysis. Kopsimalines A (1), B (2), C (3), D (4), and E (5) and kopsiloscine J (10) were found to reverse multidrug-resistance in vincristine-resistant KB cells, with 1 showing the highest potency.
  2. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2007 Nov;70(11):1783-9.
    PMID: 17939738
    Eleven new indole alkaloids, in addition to the previously reported rhazinal (1), and 14 other known alkaloids, were obtained from the Malayan Kopsia singapurensis, viz., kopsiloscines A-F (2-7), 16-epikopsinine (8), kopsilongine- N-oxide (9), 16-epiakuammiline (10), aspidophylline A (11), and vincophylline (12). The structures of these alkaloids were determined using NMR and MS analyses. Rhazinal (1), rhazinilam (17), and rhazinicine (18) showed appreciable cytotoxicity toward drug-sensitive as well as vincristine-resistant KB cells, while kopsiloscines A (2), B (3), and D (5) and aspidophylline A (11) were found to reverse drug-resistance in drug-resistant KB cells.
  3. Sim DS, Chong KW, Nge CE, Low YY, Sim KS, Kam TS
    J Nat Prod, 2014 Nov 26;77(11):2504-12.
    PMID: 25333996 DOI: 10.1021/np500589u
    Seven new indole alkaloids (1-7) comprising four vobasine, two tacaman, and one corynanthe-tryptamine bisindole alkaloid were isolated from the stem-bark extract of a Malayan Tabernaemontana. Two of the new vobasine alkaloids (1, 3), as well as 16-epivobasine (15) and 16-epivobasenal (17), showed appreciable cytotoxicity toward KB cells (IC50 ca. 5 μg/mL). The structure of the known Tabernaemontana alkaloid tronoharine (8) was revised based on newly acquired NMR data, as well as X-ray diffraction analysis.
  4. Sim DS, Teoh WY, Sim KS, Lim SH, Thomas NF, Low YY, et al.
    J Nat Prod, 2016 Apr 22;79(4):1048-55.
    PMID: 26918761 DOI: 10.1021/acs.jnatprod.5b01117
    Six new bisindole alkaloids of the iboga-vobasine type, vobatensines A-F (1-6), in addition to four known bisindoles (8-11), were isolated from a stem bark extract of a Malayan Tabernaemontana corymbosa. The structures of these alkaloids were determined based on analysis of the spectroscopic data and in the case of vobatensines A (1), B (2), and 16'-decarbomethoxyvoacamine (8) also confirmed by partial syntheses. Nine of these alkaloids (1-5, 8-11) showed pronounced in vitro growth inhibitory activity against human KB, PC-3, LNCaP, HCT 116, HT-29, MCF7, MDA-MB-231, and A549 cancer cells.
  5. Sim DS, Navanesan S, Sim KS, Gurusamy S, Lim SH, Low YY, et al.
    J Nat Prod, 2019 04 26;82(4):850-858.
    PMID: 30869890 DOI: 10.1021/acs.jnatprod.8b00919
    Examination of the EtOH extract of the leaves of the Malayan Tabernaemontana corymbosa resulted in the isolation of four new (1-4) and two known bisindole alkaloids (5, 6) of the Aspidosperma- Aspidosperma type. The structures of these alkaloids were determined based on analysis of the spectroscopic data (NMR and HRESIMS). X-ray diffraction analyses of the related bisindole alkaloids conophylline (5) and conophyllinine (6) established the absolute configurations. Treatment of the bisindole alkaloid conophylline (5) with benzeneselenic anhydride gave, in addition to the known bisindole polyervinine (7) previously isolated from another Malayan Tabernaemontana, another bisindole product, 8, an isolable tautomer of 7. X-ray diffraction analyses yielded the absolute configurations of both bisindoles and in addition showed that polyervinine (7) exists primarily as the neutral dione structure. The bisindoles (1-8) and the related conophylline-type bisindoles (9-13) showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, A549, HT-29, and HCT 116 cells, with IC50 values for the active compounds in the 0.01-5 μM range.
  6. Shimokawa Y, Akao Y, Hirasawa Y, Awang K, Hadi AH, Sato S, et al.
    J Nat Prod, 2010 Apr 23;73(4):763-7.
    PMID: 20192242 DOI: 10.1021/np9007987
    Gneyulins A (1) and B (2), two new stilbene trimers consisting of oxyresveratrol constituent units, and noidesols A (3) and B (4), two new dihydroflavonol-C-glucosides, were isolated from the bark of Gnetum gnemonoides. The structures and configurations of 1-4 were elucidated on the basis of 2D NMR correlations and X-ray analysis. Gneyulins A (1) and B (2) showed inhibition of Na(+)-glucose transporters (SGLT-1 and SGLT-2).
  7. Shao N, Yao G, Chang LC
    J Nat Prod, 2007 May;70(5):869-71.
    PMID: 17428090
    A new tetrabromospirocyclohexadienylisoxazole, (+)-12-hydroxyhomoaerothionin (1), together with the known compounds (+)-aerothionin (2) and crinemodin-rhodoptilometrin bianthrone (3), were isolated from the marine crinoid Himerometra magnipinna, which had been collected in the South China Sea, Malaysia. The structure of 1 was elucidated by interpretation of 1D 1H and 13C NMR spectra and 2D 1H-1H COSY, HMQC, and HMBC spectra. This is the first report of tetrabromospirocyclohexadienylisoxazole compounds from a crinoid of Himerometra. Compounds 1-3 were evaluated for their inhibitory activity with the hyphae formation inhibition assay in Streptomyces 85E.
  8. Samuvel DJ, Nguyen NT, Jaeschke H, Lemasters JJ, Wang X, Choo YM, et al.
    J Nat Prod, 2022 Jul 22;85(7):1779-1788.
    PMID: 35815804 DOI: 10.1021/acs.jnatprod.2c00324
    Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. Platanosides (PTSs) isolated from the American sycamore tree (Platanus occidentalis) represent a potential new four-molecule botanical drug class of antibiotics active against drug-resistant infectious disease. Preliminary studies have suggested that PTSs are safe and well tolerated and have antioxidant properties. The potential utility of PTSs in decreasing APAP hepatotoxicity in mice in addition to an assessment of their potential with APAP for the control of infectious diseases along with pain and pyrexia associated with a bacterial infection was investigated. On PTS treatment in mice, serum alanine aminotransferase (ALT) release, hepatic centrilobular necrosis, and 4-hydroxynonenal (4-HNE) were markedly decreased. In addition, inducible nitric oxide synthase (iNOS) expression and c-Jun-N-terminal kinase (JNK) activation decreased when mice overdosed with APAP were treated with PTSs. Computational studies suggested that PTSs may act as JNK-1/2 and Keap1-Nrf2 inhibitors and that the isomeric mixture could provide greater efficacy than the individual molecules. Overall, PTSs represent promising botanical drugs for hepatoprotection and drug-resistant bacterial infections and are effective in protecting against APAP-related hepatotoxicity, which decreases liver necrosis and inflammation, iNOS expression, and oxidative and nitrative stresses, possibly by preventing persistent JNK activation.
  9. Salim F, Yunus YM, Anouar EH, Awang K, Langat M, Cordell GA, et al.
    J Nat Prod, 2019 11 22;82(11):2933-2940.
    PMID: 31686505 DOI: 10.1021/acs.jnatprod.8b00380
    The structure elucidation of three new alkaloids named isoformosaninol (1), formosaninol (2), and longiflorine (3), isolated from the leaves of Uncaria longiflora var. pteropoda (Miq.) Ridsdale, along with their biosynthetic pathways are discussed. Their absolute structures were determined through a combination of physical data interpretation and quantum chemical calculations using the time-dependent density functional theory (TDDFT) method.
  10. Saad JM, Soepadamo E, Fang XP, McLaughlin JL, Fanwick PE
    J Nat Prod, 1991 11 1;54(6):1681-3.
    PMID: 1812217
    The known lignan (-)-grandisin [1] has been isolated from Cryptocarya crassinervia by using the brine shrimp lethality test to direct the isolation; its structure and relative stereochemistry have been determined by ir, 1H nmr, ms, and X-ray crystallography as an all-trans alpha, alpha'-diaryl-beta, beta'-dimethyltetrahydrofuran. Compound 1 is not significantly cytotoxic in our panel of human tumor cells.
  11. Roux D, Hadi HA, Thoret S, Guénard D, Thoison O, Païs M, et al.
    J Nat Prod, 2000 Aug;63(8):1070-6.
    PMID: 10978200
    Microtubule disassembly inhibitory properties have been established for the known polyisoprenylated benzophenones xanthochymol (1a) and guttiferone E (1b). The compounds were isolated from the fruits of Garcinia pyrifera collected in Malaysia. A structure-activity relationship study, including natural and semisynthetic derivatives, delineated some structural features necessary for the interaction with tubulin within this compound class.
  12. Rouger C, Derbré S, Charreau B, Pabois A, Cauchy T, Litaudon M, et al.
    J Nat Prod, 2015 Sep 25;78(9):2187-97.
    PMID: 26301802 DOI: 10.1021/acs.jnatprod.5b00222
    Phytochemical investigation on the fruits of Mesua lepidota (Calophyllaceae) led to the isolation of seven new phenylcoumarin derivatives named lepidotols A-E (1-5) and lepidotins A and B (6, 7). These structures were elucidated by spectroscopic and spectrometric methods including UV, NMR, and HRMS. Lepidotol A (1), the major compound, was evaluated for its inhibitory effect on inflammation and immunity using endothelial cell-based cellular assays. At 10 μM, 1 exhibited an anti-inflammatory activity, with a significant inhibition of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression induced by tumor necrosis factor-α. Lepidotol A also showed a mild immunosuppressive effect, with inhibition of the major histocompatibility complex molecules, namely, human leukocyte antigen (HLA)-DR and HLA-E.
  13. Rees KA, Bermudez C, Edwards DJ, Elliott AG, Ripen JE, Seta C, et al.
    J Nat Prod, 2015 Aug 28;78(8):2141-4.
    PMID: 26284978 DOI: 10.1021/acs.jnatprod.5b00410
    In an ongoing program to identify new anti-infective leads, an extract derived from whole plant material of Desmodium congestum collected in the Sarawak rainforest was found to have anti-MRSA activity. Bioassay-guided isolation led to the isolation of two new prenylated chalcones, 5'-O-methyl-3-hydroxyflemingin A (1) and 5'-O-methylflemingin C (2), which were closely related to the flemingins previously isolated from various Flemingia species. Chalcones 1 and 2, which were determined to be 4:6 enantiomeric mixtures by chiral HPLC, exhibited moderate activity against a panel of Gram-positive bacteria and were also cytotoxic to the HEK293 human embryonic kidney cell line.
  14. Ramli RA, Lie W, Pyne SG
    J Nat Prod, 2014 Apr 25;77(4):894-901.
    PMID: 24606395 DOI: 10.1021/np400978x
    Four new stichoneurine-type alkaloids, stichoneurines F and G (1-2) and sessilistemonamines E and F (3-4), have been isolated from the root extracts of Stichoneuron caudatum. The structures and relative configurations of these alkaloids have been determined by spectroscopic methods and molecular modeling experiments. Compounds 1-4 were tested for their acetylcholinesterase (AChE) inhibitory activities against human AChE. Compound 3 showed significant inhibitory activity with an IC50 value of 9.1±0.15 μM.
  15. Pettit GR, Meng Y, Gearing RP, Herald DL, Pettit RK, Doubek DL, et al.
    J Nat Prod, 2004 Feb;67(2):214-20.
    PMID: 14987061
    Bioassay (P388 lymphocytic leukemia cell line and human tumor cell lines)-guided separation of the extracts prepared from the tropical and coastal trees Hernandia peltata (Malaysia) and Hernandianymphaeifolia (Republic of Maldives) led to the isolation of a new lignan designated as hernanol (1) and 12 previously known lignans: (-)-deoxypodophyllotoxin (2), deoxypicropodophyllin (3), (+)-epiaschantin (4), (+)-epieudesmin (5), praderin (6), 5'-methoxyyatein (7), podorhizol (8), deoxypodorhizone (9), bursehernin (10), kusunokinol (11), clusin (12), and (-)-maculatin (13). The oxidative cyclization (with VOF(3)) of lignans 8, 9, and 10 resulted in a new and unusual benzopyran (14), isostegane (15), and a new dibenzocyclooctadiene lactone (16), respectively. The structure and relative stereochemistry of hernanol (1) and lignans 3, 7, 8, 9, 10, 11, and 12 were determined by 1D and 2DNMR and HRMS analyses. The structures and absolute stereochemistry of structures 2, 4, 5, 6, 13, 14, 15, and 16 were unequivocally determined by single-crystal X-ray diffraction analyses. Evaluation against the murine P388 lymphocytic leukemia cell line and human tumor cell lines showed podophyllotoxin derivatives 2 and 3 to be strong cancer cell line growth inhibitors and substances 4, 5, 8, and 15 to have marginal cancer cell line inhibitory activities. Seven of the lignans and one of the synthetic modifications (14) inhibited growth of the pathogenic bacterium Neisseria gonorrhoeae.
  16. Permana D, Lajis NH, Mackeen MM, Ali AM, Aimi N, Kitajima M, et al.
    J Nat Prod, 2001 Jul;64(7):976-9.
    PMID: 11473441
    Two new prenylated compounds, the benzoquinone atrovirinone (1) and the depsidone atrovirisidone (2), were isolated from the roots of Garcinia atroviridis. Their structures were determined on the basis of the analysis of spectroscopic data. While compound 2 showed some cytotoxicity against HeLa cells, both compounds 1 and 2 were only mildly inhibitory toward Bacillus cereus and Staphylococcus aureus.
  17. Permana D, Lajis NH, Othman AG, Ali AM, Aimi N, Kitajima M, et al.
    J Nat Prod, 1999 Oct;62(10):1430-1.
    PMID: 10543909
    A new anthraquinone, 2-hydroxymethyl-10-hydroxy-1,4-anthraquinone (1), was isolated from Hedyotis herbacea along with three other known derivatives: 1,4-dihydroxy-2-hydroxymethylanthraquinone (2); 2, 3-dimethoxy-9-hydroxy-1,4-anthraquinone; and 1,4-dihydroxy-2, 3-dimethoxyanthraquinone. The structure of 1 was determined based on analysis of its spectroscopic data.
  18. Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, et al.
    J Nat Prod, 2016 Apr 22;79(4):784-91.
    PMID: 26974604 DOI: 10.1021/acs.jnatprod.5b00810
    Four new 2,3-secodammarane triterpenoids, stellatonins A-D (3-6), together with a new 3,4-secodammarane triterpenoid, stellatonin E (7), and the known silvestrol (1), 5‴-episilvestrol (2), and β-sitosterol, were isolated from a methanol extract of the stems of Aglaia stellatopilosa through bioassay-guided fractionation. The structures of the new compounds were elucidated using spectroscopic and chemical methods. The compounds were evaluated for their cytotoxic activity against three human cancer cell lines and for their antimicrobial activity using a microtiter plate assay against a panel of Gram-positive and Gram-negative bacteria and fungi.
  19. Nugroho AE, Hirasawa Y, Kawahara N, Goda Y, Awang K, Hadi AH, et al.
    J Nat Prod, 2009 Aug;72(8):1502-6.
    PMID: 19388660 DOI: 10.1021/np900115q
    A new bisindole alkaloid, bisnicalaterine A (1), consisting of two vobasine-type skeletons, and 3-epivobasinol (2) and 3-O-methylepivobasinol (3), with vobasine-type skeletons, were isolated from the leaves of Hunteria zeylanica, and their structures were elucidated on the basis of spectroscopic data and chemical correlation. Bisnicalaterine A showed moderate cytotoxicity against various human cancer cell lines.
  20. Nugroho AE, Zhang W, Hirasawa Y, Tang Y, Wong CP, Kaneda T, et al.
    J Nat Prod, 2018 11 26;81(11):2600-2604.
    PMID: 30362746 DOI: 10.1021/acs.jnatprod.8b00749
    Three new bisindole alkaloids, bisleuconothines B-D (1-3), were isolated from the bark of Leuconotis griffithii. Their structures were elucidated by 1D and 2D NMR spectroscopy and DFT calculations. Bisleuconothine B (1) is the first monoterpene indole alkaloid dimer featuring bridges between both C-16-C-10' and C-2-O-C-9'. All compounds were deemed noncytotoxic (IC50 > 10 μM) when tested against A549 human lung adenocarcinoma cells.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links