Displaying publications 21 - 40 of 117 in total

Abstract:
Sort:
  1. Salihu SO, Bakar NKA
    Talanta, 2018 May 01;181:401-409.
    PMID: 29426532 DOI: 10.1016/j.talanta.2018.01.041
    In this study, a simple sample preparation method was developed for the determination of tri-and hexavalent chromium in water samples. It utilizes a pre-heated customized glass tube (CGT), to supply the heat energy required for the reaction of Cr(III) with ammonium pyrrolidinedithiocarbamate (APDC). The products of the Cr complexes, tris(1-pyrrolidinecarbodithioato)chromium(III) and bis(1-pyrrolidinecarbodithioato)[1-pyrrolidinecarbodithio(thioperoxoato)]chromium(III) were chromatographed with Shimadzu LC-20AT and Zobax Eclipse C18 (150mm × 4.6mm, 5µm) column using ACN: Water, (7:3, v/v) as the mobile phase. The concentration of Cr(III) ranged from 0.06mgL-1to 0.09mgL-1and that of Cr(VI) was between 0.02mgL-1to 0.04mgL-1in the samples. Percentage recoveries from spiked real samples were between 87% (tap water) to 110% (wastewater) for Cr(III) and 92% (pond water) to 117% (tap water) for Cr(VI). The limits of detection (LODs) were 0.0029mgL-1and 0.0014mg/L-1for Cr(III) Cr(VI) respectively. While the limits of quantitation (LOQs), were 0.0098mgL-1and 0.0047mgL-1for Cr(III) and Cr(VI) respectively. Method precision (RSD (%)) was 3.3% and 3.5% for Cr(III) and Cr(VI) respectively. The developed method was applied for the speciation analysis of chromium in drinking water, tap water, wastewater, river water, and pond water samples. Our findings proved the method is simple and inexpensive. The method was validated by the analysis of a certified reference material (CRM) SLRS-4. The percentage recovery and RSD(%) from the spiked CRM were 91% and 115% and 0.32% and 1.4% for Cr(III) and Cr(VI) respectively.
    Matched MeSH terms: Ammonium Compounds
  2. Yusof R, Jumbri K, Ahmad H, Abdulmalek E, Abdul Rahman MB
    PMID: 33636491 DOI: 10.1016/j.saa.2021.119543
    The binding characteristics of DNA in deep eutectic solvents (DESs), particularly the binding energy and interaction mechanism, are not widely known. In this study, the binding of tetrabutylammonium bromide (TBABr) based DES of different hydrogen bond donors (HBD), including ethylene glycol (EG), glycerol (Gly), 1,3-propanediol (1,3-PD) and 1,5-pentanediol (1,5-PD), to calf thymus DNA was investigated using fluorescence spectroscopy. It was found that the shorter the alkyl chain length (2 carbons) and higher EG ratios of TBABr:EG (1:5) increased the binding constant (Kb) between DES and DNA up to 5.75 × 105 kJ mol-1 and decreased the binding of Gibbs energy (ΔGo) to 32.86 kJ mol-1. Through displacement studies, all synthesised DESs have been shown to displace DAPI (4',6-diamidino-2-phenylindole) and were able to bind on the minor groove of Adenine-Thymine (AT)-rich DNA. A higher number of hydroxyl (OH) groups caused the TBABr:Gly to form more hydrogen bonds with DNA bases and had the highest ability to quench DAPI from DNA, with Stern-Volmer constants (Ksv) of 115.16 M-1. This study demonstrated that the synthesised DESs were strongly bound to DNA through a combination of electrostatic, hydrophobic, and groove binding. Hence, DES has the potential to solvate and stabilise nucleic acid structures.
    Matched MeSH terms: Quaternary Ammonium Compounds*
  3. Lim JK, Chieh DC, Jalak SA, Toh PY, Yasin NH, Ng BW, et al.
    Small, 2012 Jun 11;8(11):1683-92.
    PMID: 22438107 DOI: 10.1002/smll.201102400
    Magnetic collection of the microalgae Chlorella sp. from culture media facilitated by low-gradient magnetophoretic separation is achieved in real time. A removal efficiency as high as 99% is accomplished by binding of iron oxide nanoparticles (NPs) to microalgal cells in the presence of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) as a binder and subsequently subjecting the mixture to a NdFeB permanent magnet with surface magnetic field ≈6000 G and magnetic field gradient <80 T m(-1) . Surface functionalization of magnetic NPs with PDDA before exposure to Chlorella sp. is proven to be more effective in promoting higher magnetophoretic removal efficiency than the conventional procedure, in which premixing of microalgal cells with binder is carried out before the addition of NPs. Rodlike NPs are a superior candidate for enhancing the magnetophoretic separation compared to spherical NPs due to their stable magnetic moment that originates from shape anisotropy and the tendency to form large NP aggregates. Cell chaining is observed for nanorod-tagged Chlorella sp. which eventually fosters the formation of elongated cell clusters.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  4. Tan LL, Musa A, Lee YH
    Sensors (Basel), 2011;11(10):9344-60.
    PMID: 22163699 DOI: 10.3390/s111009344
    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH(4)(+)) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH(4)(+) ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH(4)(+) was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH(4)(+) ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH(4)(+) ion concentrations between 10-100 mM, with a detection limit of 0.18 mM NH(4)(+) ion. The reproducibility of the amperometrical NH(4)(+) biosensor yielded low relative standard deviations between 1.4-4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH(4)(+) ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH(4)(+) obtained from the biosensor and the Nessler spectrophotometric method.
    Matched MeSH terms: Quaternary Ammonium Compounds/analysis*
  5. Chang CC, Saad B, Surif M, Ahmad MN, Md Shakaff AY
    Sensors (Basel), 2008 Jun 01;8(6):3665-3677.
    PMID: 27879900
    A disposable screen-printed e-tongue based on sensor array and pattern recognition that is suitable for the assessment of water quality in fish tanks is described. The characteristics of sensors fabricated using two kinds of sensing materials, namely (i) lipids (referred to as Type 1), and (ii) alternative electroactive materials comprising liquid ion-exchangers and macrocyclic compounds (Type 2) were evaluated for their performance stability, sensitivity and reproducibility. The Type 2 e-tongue was found to have better sensing performance in terms of sensitivity and reproducibility and was thus used for application studies. By using a pattern recognition tool i.e. principal component analysis (PCA), the e-tongue was able to discriminate the changes in the water quality in tilapia and catfish tanks monitored over eight days. E-tongues coupled with partial least squares (PLS) was used for the quantitative analysis of nitrate and ammonium ions in catfish tank water and good agreement were found with the ion-chromatography method (relative error, ±1.04- 4.10 %).
    Matched MeSH terms: Ammonium Compounds
  6. Chua SC, Chong FK, Ul Mustafa MR, Mohamed Kutty SR, Sujarwo W, Abdul Malek M, et al.
    Sci Rep, 2020 03 03;10(1):3959.
    PMID: 32127558 DOI: 10.1038/s41598-020-60119-x
    The importance of graft copolymerization in the field of polymer science is analogous to the importance of alloying in the field of metals. This is attribute to the ability of the grafting method to regulate the properties of polymer 'tailor-made' according to specific needs. This paper described a novel plant-based coagulant, LE-g-DMC that synthesized through grafting of 2-methacryloyloxyethyl trimethyl ammonium chloride (DMC) onto the backbone of the lentil extract. The grafting process was optimized through the response surface methodology (RSM) using three-level Box-Behnken Design (BBD). Under optimum conditions, a promising grafting percentage of 120% was achieved. Besides, characterization study including SEM, zeta potential, TGA, FTIR and EDX were used to confirm the grafting of the DMC monomer chain onto the backbone of lentil extract. The grafted coagulant, LE-g-DMC outperformed lentil extract and alum in turbidity reduction and effective across a wide range of pH from pH 4 to pH 10. Besides, the use of LE-g-DMC as coagulant produced flocs with excellent settling ability (5.09 mL/g) and produced the least amount of sludge. Therefore, from an application and economic point of views, LE-g-DMC was superior to native lentil extract coagulant and commercial chemical coagulant, alum.
    Matched MeSH terms: Trimethyl Ammonium Compounds/chemistry*
  7. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p ammonium silane demonstrated to be a potent antibacterial cavity disinfectant and a plaque inhibitor and can be of potential significance in eliminating caries-forming bacteria.
    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology*
  8. Lee HS, Singh JK, Ismail MA
    Sci Rep, 2017 02 03;7:41935.
    PMID: 28157233 DOI: 10.1038/srep41935
    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
    Matched MeSH terms: Ammonium Compounds
  9. Tayeb MA, Ismail BS, Khairiatul Mardiana J, Goh CT
    Sains Malaysiana, 2016;45:237-245.
    Glufosinate ammonium or ammonium salt (ammonium-(2RS)-2-amino-4- (methylphosphinato) butyric acid; C5H15N2O4P) is a commonly used polar herbicide in Malaysia and present in a variety of environmental waters at the sub-ppb level. Thus, glufosinate ammonium is analyzed in soil and water using high-performance liquid chromatography (HPLC), which is a complex yet the most powerful analysis tool. HPLC is tremendously sensitive and highly automated and HPLC instrumentation and machinery have improved over the years. However, typical problems are still encountered. HPLC users and advanced learners require help in identifying, separating and correcting typical problems. All HPLC systems consist of similar basic components. Although it is a modular system, trouble can occur in each component and change the overall performance. Resolving these problems may be expensive. This review describes the different aspects of HPLC, particularly troubleshooting, common problems and easy guidelines for maintenance.
    Matched MeSH terms: Ammonium Compounds
  10. Mohammad Mu'az Hashim, Mohd Khanif Yusop, Radziah Othman, Samsuri Abd. Wahid
    Sains Malaysiana, 2017;46:925-932.
    Implementation of sound fertilizer management in rice cultivation is essential in optimizing productivity and profitability. The use of controlled release fertilizer (CRF) to improve crop production in various cropping systems has been widely explored, with new approaches and materials continually being studied to produce new CRF. A field study was carried out to determine the efficiency of local CRFs on rice production and N uptake using MR220 CL1 rice variety. Ten different types of CRFs consisting of two groups namely biochar impregnated urea (BIU 300-5, BIU 300-10, BIU 700-5 and BIU 700-10) and palm stearin (PS) coated urea with nitrification inhibitors (PS, PS+DMPP-100, PS+DMPP-50, PS+DMPP-150, PS+Cu and PS+Zn) were used as treatments. Plant height, SPAD reading, 1000-grain weight and harvest index (HI) showed significant improvement in rice treated with both biochar impregnated and palm stearin coated urea. With respect to grain yield, BIU 300-10, BIU 700-5, BIU 700-10, PS+DMPP-100, PS+DMPP-50, PS+DMPP-150 and PS+Cu treatments significantly increased rice yield. The CRFs mostly showed significantly higher N uptake in rice, especially in rice grains, however, there was no significant difference among treatments in soil residual ammonium (NH4+-N). The newly-developed CRFs showed huge potential as an alternative for common urea, especially BIU 700-5, BIU 700-10, PS+DMPP-100 and PS+DMPP-50, in increasing rice grain yield. With proper approaches, these CRFs can contribute in improving rice production to provide sufficient food for ever increasing population.
    Matched MeSH terms: Ammonium Compounds
  11. Jutarut Iewkittayakorn, Juntima Chungsiriporn, Prukraya Pongyeela
    Sains Malaysiana, 2017;46:1763-1769.
    Ammonium-enriched skim latex serum - used for absorption of contaminating ammonia gas - when composted with other rubber tree wastes, is promising as a good compost. The objective of this research was to utilize ammonium-enriched skim latex serum (S) as a raw composting ingredient after being combined with para sawdust (W1) and para rubber leaves (W2). Several ratios of S, W1 and W2 were experimented in a 15L composting vessel to determine the most effective compost. The best ratio was found to be 3:1:3 by weight at 12-day retention. The modified 30 L composting reactor employed with the derived optimum mixing conditions yielded N, P and K of 2.40, 1.51 and 14.84 %w/w. The growth of Brassica alboglabra after application of this compost combined with a chemical fertilizer generated the highest fresh weight (4.48 g/plant). Thus, compost from these wastes could be used as a fertilizer and logically should contribute to cost saving of waste disposal.
    Matched MeSH terms: Ammonium Compounds
  12. Shahidan Radiman
    The evolution of microemulsion microstructure formed from didodecyl dimethyl ammonium bromide, water and cyclohexane which started from being structureless (fiat scattering profile) to a mean-field Ginsburg-Landau behaviour is shown. The evolution gave the characteristic Lorentzian scattering profile as the system approaches phase separation.
    Evolusi mikrostruktur mikroemulsi yang terbentuk daripada didodesil dimetil ammonium bromida, air dan sildoheksana tiada berstruktur (profil serakan yang malar) kepada medan-min Ginsburg-Landau. Evolusi tersebut memberikan serakan Lorentz apabila komposisinya menghampiri sempadan pemisahan fasa.
    Matched MeSH terms: Quaternary Ammonium Compounds; Ammonium Compounds
  13. Atikah Ismail, Azman Hassan, Aznizam Abu Bakar, Jawaid M
    Sains Malaysiana, 2013;42:429-434.
    The effects of ammonium polyphosphate (APP) as flame retardant and kenaf as fillers on flammability, thermal and mechanical properties of polypropylene (PP) composites were determined. Test specimens were prepared by using a corotating twin screw extruder for the compounding process followed by injection molding. The flame retardancy of the composites was determined by using limiting oxygen index (LOI) test. Addition of flame retardant into kenaf-PP composites significantly increased the LOI values that indicated the improvement of flame retardancy. Thermogravimetric analysis was done to examine the thermal stability of the composites. The addition of kenaf fiber in PP composites decreased the thermal stability significantly but the influence of APP on thermal properties of the kenaf-filled PP composites was not significant. The flexural strength and modulus of the composites increased with the addition of APP into kenaf filled
    PP composite. The addition of APP into kenaf filled PP causes increase in the impact strength while increasing the APP content in the kenaf filled PP composite show decrease in impact strength.
    Matched MeSH terms: Ammonium Compounds
  14. Wibowo TY, Ridzuan Zakaria, Ahmad Zuhairi Abdullah
    Organomontmorillonites were synthesized by grafting cationic surfactants i.e quaternary ammonium compounds into the interlayer space and were characterized using XRD, FTIR and N2 adsorption/ desorption analysis. The organomontmorillonites were applied as catalyst for the esterification of glycerol (GL) with lauric acid (LA). The catalyst which had symmetrical onium salts (tetrabuthylammoniumbromide, TBAB) gave higher activity than that of unsymmetrical onium salts (cetyltrimethylammoniumbromide, CTAB). Over the TBAB-montmorillonite catalyst, glycerol monolaurate was obtained with a selectivity of about 80%, a lauric acid conversion of about 71% and a glycerol monolaurate yield of about 57%.
    Matched MeSH terms: Quaternary Ammonium Compounds
  15. Siti Khatijah Deraman, Nor Sabirin Mohamed, Ri Hanum Yahaya Subban
    Sains Malaysiana, 2014;43:877-883.
    This paper is focussed on conductivity and dielectric properties of Poly (vinyl) chloride (Pvc)- ammonium triflate (NH4CF3SO3) - butyltrimethyl ammonium bis (trifluoromethyl sulfonyl) imide (Bu3MeNTf2N) ionic liquid, electrolyte system. The electrolyte is prepared by solution cast technique. In this work, the sample containing 30 wt. % NH4CF3SO3 exhibits the highest room temperature conductivity of 2.50 x 10-7 S cm' . Ionic liquid is added in various quantities to the 70 wt. % Pvc-30 wt. % NH4CF3SO3 composition in order to enhance the conductivity of the sample. The highest conductivity at room temperature is obtained for the sample containing 15 wt. % Bu3MeNTf2N with a value of 1.56 x 10 -4 S cm' . The effects of ionic liquid addition on the frequency dependent dielectric properties of PVC based electrolytes is investigated by electrochemical impedance spectroscopy (Eis) at room temperature. The values of dielectric constant were found to increase with increasing conductivity of the samples. Analysis of the ac conductivity data showed the electrolytes to be of the non-Debye type.
    Matched MeSH terms: Ammonium Compounds
  16. Mohd Nazri Idris, Abdul Razak Daud, Nur Akma Mahat, Mohd Hafizuddin Ab Ghani, Norinsan Kamil Othman, Fathul Karim Sahrani
    Sains Malaysiana, 2015;44:1593-1598.
    The performance of pipeline system used in petroleum industry is crucially declined by natural microbial activities and
    demanding extra operational cost. Requirement on high capability of functional substances is attracting worldwide
    research interest. The aim of this paper was to study the effectiveness of benzyltriethylammonium chloride (BTC) on
    reducing the activity of a consortium bacteria consisting of sulfate-reducing bacteria (C-SRB). C-SRB was isolated from
    tropical crude oil and enumeration of this consortium was measured by viable cell count technique. The effectiveness of
    BTC was calculated from potentiodynamic polarization method and biofilm analysis was performed by scanning electron
    microscope. The viable cell count technique indicated that the maximum growth of C-SRB was approximately 160 trillion
    CFU/mL at 7 days incubation period. BTC was capable of reducing biocorrosion activity due to adsorption process and
    mitigating SRB species. Biofilm analysis has proven that C-SRB activity is minimized due to less presence of bacterial
    growth, extracellular polymeric substances and corrosion product. In conclusion, BTC is capable to inhibit C-SRB activity
    on biocorrosion of carbon steel pipeline.
    Matched MeSH terms: Quaternary Ammonium Compounds
  17. Rudhziah S, Muda N, Ibrahim S, Rahman A, Mohamed N
    Sains Malaysiana, 2011;40:1179-1186.
    In the present work, polymer electrolytes of poly(vinylidene fluoride co-hexafluoroproplyne) (PVDF-HFP) and PVDF-HFP/poly(ethyl methacrylate) (PVDF-HFP/PEMA) blend complexed with different concentrations of ammonium triflate (NH4CF3SO3) were prepared and characterized. The structural and thermal properties of the electrolytes were studied by XRD and DSC while the electrical properties were investigated by impedance spectroscopy. Ionic transference number measurements were done by D.C polarization technique. The results of these study showed that the PVDF-HFP/PEMA based electrolytes exhibit higher ionic conductivity as compared to PVDF-HFP based electrolytes. This could be attributed to the higher degree of amorphicity in the PVDF-HFP/PEMA based electrolytes. The results of ionic transference number measurements showed that the charge transport in these electrolytes was mainly due to ions and only negligible contribution comes from electrons.
    Matched MeSH terms: Ammonium Compounds
  18. Sohaimy MIHA, Isa MINM
    Polymers (Basel), 2020 Oct 26;12(11).
    PMID: 33114745 DOI: 10.3390/polym12112487
    Green and safer materials in energy storage technology are important right now due to increased consumption. In this study, a biopolymer electrolyte inspired from natural materials was developed by using carboxymethyl cellulose (CMC) as the core material and doped with varied ammonium carbonate (AC) composition. X-ray diffraction (XRD) shows the prepared CMC-AC electrolyte films exhibited low crystallinity content, Xc (~30%) for sample AC7. A specific wavenumber range between 900-1200 cm-1 and 1500-1800 cm-1 was emphasized in Fourier transform infrared (FTIR) testing, as this is the most probable interaction to occur. The highest ionic conductivity, σ of the electrolyte system achieved was 7.71 × 10-6 Scm-1 and appeared greatly dependent on ionic mobility, µ and diffusion coefficient, D. The number of mobile ions, η, increased up to the highest conducting sample (AC7) but it became less prominent at higher AC composition. The transference measurement, tion showed that the electrolyte system was predominantly ionic with sample AC7 having the highest value (tion = 0.98). Further assessment also proved that the H+ ion was the main conducting species in the CMC-AC electrolyte system, which presumably was due to protonation of ammonium salt onto the complexes site and contributed to the overall ionic conductivity enhancement.
    Matched MeSH terms: Ammonium Compounds
  19. Hamsan MH, Nofal MM, Aziz SB, Brza MA, Dannoun EMA, Murad AR, et al.
    Polymers (Basel), 2021 Apr 11;13(8).
    PMID: 33920346 DOI: 10.3390/polym13081233
    Chitosan (CS)-dextran (DN) biopolymer electrolytes doped with ammonium iodide (NH4I) and plasticized with glycerol (GL), then dispersed with Zn(II)-metal complex were fabricated for energy device application. The CS:DN:NH4I:Zn(II)-complex was plasticized with various amounts of GL and the impact of used metal complex and GL on the properties of the formed electrolyte were investigated.The electrochemical impedance spectroscopy (EIS) measurements have shown that the highest conductivity for the plasticized system was 3.44 × 10-4 S/cm. From the x-ray diffraction (XRD) measurements, the plasticized electrolyte with minimum degree of crystallinity has shown the maximum conductivity. The effect of (GL) plasticizer on the film morphology was studied using FESEM. It has been confirmed via transference number analysis (TNM) that the transport mechanism in the prepared electrolyte is predominantly ionic in nature with a high transference number of ion (ti)of 0.983. From a linear sweep voltammetry (LSV) study, the electrolyte was found to be electrochemically constant as the voltage sweeps linearly up to 1.25 V. The cyclic voltammetry (CV) curve covered most of the area of the current-potential plot with no redox peaks and the sweep rate was found to be affecting the capacitance. The electric double-layer capacitor (EDLC) has shown a great performance of specific capacitance (108.3 F/g), ESR(47.8 ohm), energy density (12.2 W/kg) and power density (1743.4 W/kg) for complete 100 cycles at a current density of 0.5 mA cm-2.
    Matched MeSH terms: Ammonium Compounds
  20. B Aziz S, H Hamsan M, M Nofal M, San S, Abdulwahid RT, Raza Saeed S, et al.
    Polymers (Basel), 2020 Jul 09;12(7).
    PMID: 32660095 DOI: 10.3390/polym12071526
    In this study, solid polymer blend electrolytes (SPBEs) based on chitosan (CS) and methylcellulose (MC) incorporated with different concentrations of ammonium fluoride (NH4F) salt were synthesized using a solution cast technique. Both Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results confirmed a strong interaction and dispersion of the amorphous region within the CS:MC system in the presence of NH4F. To gain better insights into the electrical properties of the samples, the results of electrochemical impedance spectroscopy (EIS) were analyzed by electrical equivalent circuit (EEC) modeling. The highest conductivity of 2.96 × 10-3 S cm-1 was recorded for the sample incorporated with 40 wt.% of NH4F. Through transference number measurement (TNM) analysis, the fraction of ions was specified. The electrochemical stability of the electrolyte sample was found to be up to 2.3 V via the linear sweep voltammetry (LSV) study. The value of specific capacitance was determined to be around 58.3 F/g. The stability test showed that the electrical double layer capacitor (EDLC) system can be recharged and discharged for up to 100 cycles with an average specific capacitance of 64.1 F/g. The synthesized EDLC cell was found to exhibit high efficiency (90%). In the 1st cycle, the values of internal resistance, energy density and power density of the EDLC cell were determined to be 65 Ω, 9.3 Wh/kg and 1282 W/kg, respectively.
    Matched MeSH terms: Quaternary Ammonium Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links