Displaying publications 21 - 40 of 67 in total

Abstract:
Sort:
  1. Ong HT, Rozina G
    Med J Malaysia, 2009 Mar;64(1):3-11.
    PMID: 19852313 MyJurnal
    Since hypertension is generally asymptomatic, in treating hypertension we are actually seeking to prevent target organ damage and reduce adverse clinical outcome. There have been numerous large clinical trials addressing the question of whether any antihypertensive drug has special protective effects on the cardiovascular and renal systems in addition to the benefit from blood pressure (BP) reduction1-15. In seeking to correctly interpret the message from these trials, it is important to avoid the confusion that can occur when pharmaceutical companies seek to make the results suit their marketing needs 16-18. The aim of this article is thus to provide an unbiased review of the value of the different antihypertensive drugs for the clinician treating essential hypertension in Malaysia.
    Matched MeSH terms: Angiotensin II Type 1 Receptor Blockers/therapeutic use
  2. Rathore HA, Munavvar AS, Abdullah NA, Khan AH, Fathihah B, NurJannah MH, et al.
    Auton Autacoid Pharmacol, 2009 Oct;29(4):171-80.
    PMID: 19740088 DOI: 10.1111/j.1474-8665.2009.00445.x
    1 A raised cardiac workload activates neurohormones which will increase muscle mass and shift contractility to the right along the Frank-Starling curve. 2 This study examined the interaction between the SNS and RAS in contributing to vascular responsiveness following the development of cardiac hypertrophy due to aortic banding. 3 Sprague Dawley rats (180-200 g) were assigned to one of six groups; Normal, Sham-operated, Aortic Banded (AB), Aortic Banded treated with losartan (ABLOS), Aortic Banded treated with 6-hydroxydopamine (ABSYMP) and Aortic banded treated with both losartan and 6-hydroxydopamine (ABSYMPLOS). A constricting band was placed around the supra renal aorta on day zero with drug treatment from day 37 to day 44. Vasopressor responses to noradrenaline, phenylephrine, methoxamine and angiotensin II were measured on day 45. 4 The magnitudes of the MAP responses to all vasoactive agents, expressed as percentage changes, were similar in Normal and Sham groups, but reduced in the AB group. ABLOS group showed attenuated response to ANGII whereas all responses were enhanced in the ABSYM group. 5 A positive interaction between the two systems was observed with alpha(1A)-adrenoceptors identified as a major component of SNS and AT(1) receptors of RAS to induce vasopressor effects.
    Matched MeSH terms: Angiotensin II/pharmacology
  3. Abdulla MH, Sattar MA, Abdullah NA, Johns EJ
    J Physiol Biochem, 2012 Sep;68(3):353-63.
    PMID: 22281695 DOI: 10.1007/s13105-012-0147-1
    The aim of this study is to assess the effects of losartan and carvedilol on metabolic parameters and renal haemodynamic responses to angiotensin II (Ang II) and adrenergic agonists in the model of fructose-fed rat. Thirty-six Sprague-Dawley rats were fed for 8 weeks either 20% fructose solution (F) or tap water (C) ad libitum. F or C group received either losartan or carvedilol (10 mg/kg p.o.) daily for the last 3 weeks of the study (FL and L) and (FCV and CV), respectively, then in acute studies the renal vasoconstrictor actions of Ang II, noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) were determined. Data, mean±SEM were analysed using ANOVA with significance at P <0.05. Losartan and carvedilol decreased the area under the glucose tolerance curve of the fructose-fed group. The responses (%) to NA, PE, ME and Ang II in F were lower (P <0.05) than C (F vs. C, 17±2 vs. 38±3; 24±2 vs. 48±2; 12±2 vs. 34±2; 17±2 vs. 26±2), respectively. L had higher (P <0.05) responses to NA and PE while CV had blunted (P <0.05) responses to NA, PE and Ang II compared to C (L, CV vs. C, 47±3, 9±2 vs. 38±3; 61±3, 29±3 vs. 48±2; 16±3, 4±3 vs. 26±2), respectively. FL but not FCV group had enhanced (P <0.05) responses to NA, PE and ME compared to F (FL vs. F, 33±3 vs. 17±2; 45±3 vs. 24±2; 26±3 vs. 12±2), respectively. Losartan and carvedilol had an important ameliorating effect on fructose-induced insulin resistance. Losartan treatment could be an effective tool to restore normal vascular reactivity in the renal circulation of the fructose-fed rat.
    Matched MeSH terms: Angiotensin II/metabolism
  4. Balakumar P, Jagadeesh G
    Cell Signal, 2014 Oct;26(10):2147-60.
    PMID: 25007996 DOI: 10.1016/j.cellsig.2014.06.011
    Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed.
    Matched MeSH terms: Angiotensin II/metabolism
  5. Wong CY, Tan EL, Cheong SK
    Cell Biol Int, 2014 Apr;38(4):497-501.
    PMID: 24375917 DOI: 10.1002/cbin.10231
    Mesangial cells are one of the three major cell types of the kidney glomerulus that provide physical support for the glomerular capillary lumen of the kidney. Loss of mesangial cells due to pathologic conditions, such as glomerulonephritis and diabetic nephropathy, can impair renal function. Mesenchymal stem cells (MSC) are attractive candidates for kidney repair therapy since they can enhance recovery and protect against kidney failure. MSC can differentiate into mesangial cells in vivo. We have investigated the ability of MSC to differentiate into mesangial cells in vitro; they were co-cultured with oxidant-injured mesangial cells before being analysed by flow cytometry and for contractility. MSC co-cultured with injured mesangial cells had a mesangial cell-like morphology and contracted in response to angiotensin II. They expressed CD54(-) CD62E(+) in direct contrast to the CD54(+) CD62E(-) of pure MSC. In conclusion, MSC can differentiate into mesangial cells in vitro when co-cultured with injured mesangial cells.
    Matched MeSH terms: Angiotensin II/pharmacology
  6. Singh Y, Gupta G, Satija S, Negi P, Chellappan DK, Dua K
    Dermatol Ther, 2020 Jul;33(4):e13501.
    PMID: 32359088 DOI: 10.1111/dth.13501
    Matched MeSH terms: Angiotensin II Type 1 Receptor Blockers/therapeutic use*
  7. Gholami SK, Tay CS, Lee JM, Zagoren E, Maris SA, Wong JY, et al.
    J Endocrinol, 2021 11 24;252(1):1-13.
    PMID: 34643545 DOI: 10.1530/JOE-21-0126
    Inconsistencies have been reported on the effect of sex on aldosterone (ALDO) levels leading to clinical confusion. The reasons for these inconsistencies are uncertain but include estrogen and/or its receptor modulating target gene responses to mineralocorticoid receptor activation and ALDO secretagogues' levels. This study's goal was to determine whether ALDO's biosynthesis also differed by sex. Two approaches were used. First, plasma renin activity and aldosterone were measured in rats. Both were significantly higher in males. Secondly, using rat zona glomerulosa (ZG) cells, we assessed three ex vivo areas: (1) activity/levels of early steps in ALDO's biosynthesis (StAR and CYP11A1); (2) activity/levels of a late step (CYP11B2); and (3) the status of the mineralocorticoid receptor (MR)-mediated, ultrashort feedback loop. Females had higher expression of CYP11A1 and StAR and increased CYP11A1 activity (increased pregnenolone/corticosterone levels) but did not differ in CYP11B2 expression or activity (ALDO levels). Activating the ZG's MR (thereby activating the ultrashort feedback loop) reduced CYP11B2's activity similarly in both sexes. Exvivo, these molecular effects were accompanied, in females, by lower ALDO basally but higher ALDO with angiotensin II stimulation. In conclusion, we documented that not only was there a sex-mediated difference in the activity of ALDO's biosynthesis but also these differences at the molecular level help explain the variable reports on ALDO's circulating levels. Basally, both in vivo and ex vivo, males had higher ALDO levels, likely secondary to higher ALDO secretagogue levels. However, in response to acute stimulation, ALDO levels are higher in females because of the greater levels and/or activity of their StAR/CYP11A1.
    Matched MeSH terms: Angiotensin II/pharmacology
  8. Tee BH, Hoe SZ, Cheah SH, Lam SK
    Med Princ Pract, 2017;26(3):258-265.
    PMID: 28226311 DOI: 10.1159/000464363
    OBJECTIVE: This study was conducted to investigate the mechanisms of action of Eurycoma longifolia in rat corpus cavernosum.

    MATERIALS AND METHODS: Tincture of the roots was concentrated to dryness by evaporating the ethanol in vacuo. This ethanolic extract was partitioned into 5 fractions sequentially with hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The corpus cavernosum relaxant activity of each fraction was investigated. The DCM fraction which showed the highest potency in relaxing phenylephrine-precontracted corpora cavernosa was purified by column chromatography. The effects of the most potent DCM subfraction in relaxing phenylephrine-precontracted corpora cavernosa, DCM-I, on angiotensin I- or angiotensin II-induced contractions in corpora cavernosa were investigated. The effects of DCM-I pretreatment on the responses of phenylephrine-precontracted corpora cavernosa to angiotensin II or bradykinin were also studied. An in vitro assay was conducted to evaluate the effect of DCM-I on angiotensin-converting enzyme activity.

    RESULTS: Fraction DCM-I decreased the maximal contractions (100%) evoked by angiotensin I and angiotensin II to 30 ± 14% and 26 ± 16% (p < 0.001), respectively. In phenylephrine-precontracted corpora cavernosa, DCM-I pretreatment caused angiotensin II to induce 82 ± 27% relaxation of maximal contraction (p < 0.01) and enhanced (p < 0.001) bradykinin-induced relaxations from 47 ± 8% to 100 ± 5%. In vitro, DCM-I was able to reduce (p < 0.001) the maximal angiotensin-converting enzyme activity to 78 ± 0.24%.

    CONCLUSION: Fraction DCM-I was able to antagonize angiotensin II-induced contraction to cause corpus cavernosum relaxation via inhibition of angiotensin II type 1 receptor and enhance bradykinin-induced relaxation through inhibition of angiotensin-converting enzyme.

    Matched MeSH terms: Angiotensin II/pharmacology
  9. Ramachandran CD, Gholami K, Lam SK, Hoe SZ
    Exp Biol Med (Maywood), 2023 Oct;248(20):1768-1779.
    PMID: 37828834 DOI: 10.1177/15353702231198085
    An increase in blood pressure by a high-salt (HS) diet may change the expression levels of renal epithelial sodium channels (ENaCs) and aquaporins (AQPs). Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks. Mean arterial pressure (MAP) and plasma atrial natriuretic peptide (ANP), angiotensin II (Ang II), aldosterone, and arginine vasopressin (AVP) levels were determined. Expression of mRNA levels of ENaCs and AQPs were quantified by real-time PCR. The MAP was higher in SHRs on the HS diet. Plasma Ang II and aldosterone levels were low while plasma ANP level was high in both strains of rats. Renal expression of mRNA levels of α-, β-, and γ-ENaCs was lowered in SHRs on the HS diet. Meanwhile, renal AQP1, AQP2, and AQP7 mRNA expression levels were lowered in both strains of rats on the HS diet. Suppression of mRNA expression levels of ENaC and AQP subunits suggests that the high-salt-induced increase in the MAP of SHR may not be solely due to renal sodium and water retention.
    Matched MeSH terms: Angiotensin II/adverse effects
  10. Gorain B, Choudhury H, Tekade RK, Karan S, Jaisankar P, Pal TK
    Regul Toxicol Pharmacol, 2016 Dec;82:20-31.
    PMID: 27815174 DOI: 10.1016/j.yrtph.2016.10.020
    Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 μg/mL, 0.333 ± 0.071 μg/mL and 0.217 ± 0.062 μg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients.
    Matched MeSH terms: Angiotensin II Type 1 Receptor Blockers/administration & dosage; Angiotensin II Type 1 Receptor Blockers/pharmacokinetics*; Angiotensin II Type 1 Receptor Blockers/toxicity; Angiotensin II Type 1 Receptor Blockers/chemistry
  11. Seng WK, Hwang SJ, Han DC, Teong CC, Chan J, Burke TA, et al.
    Nephrology (Carlton), 2005 Oct;10(5):520-4.
    PMID: 16221106
    To evaluate losartan and conventional antihypertensive therapy (CT) compared with CT alone on the cost associated with end-stage renal disease (ESRD) in Hong Kong, Japan, Korea, Malaysia, Singapore and Taiwan.
    Matched MeSH terms: Angiotensin II Type 1 Receptor Blockers/economics*; Angiotensin II Type 1 Receptor Blockers/therapeutic use*
  12. Hwong WY, Bots ML, Selvarajah S, Abdul Aziz Z, Sidek NN, Spiering W, et al.
    PLoS One, 2016;11(11):e0166524.
    PMID: 27846309 DOI: 10.1371/journal.pone.0166524
    BACKGROUND: The increase in angiotensin II (Ang II) formation by selected antihypertensive drugs is said to exhibit neuroprotective properties, but this translation into improvement in clinical outcomes has been inconclusive. We undertook a study to investigate the relationship between types of antihypertensive drugs used prior to a stroke event and ischemic stroke severity. We hypothesized that use of antihypertensive drugs that increase Ang II formation (Ang II increasers) would reduce ischemic stroke severity when compared to antihypertensive drugs that suppress Ang II formation (Ang II suppressors).

    METHODS: From the Malaysian National Neurology Registry, we included hypertensive patients with first ischemic stroke who presented within 48 hours from ictus. Antihypertensive drugs were divided into Ang II increasers (angiotensin-I receptor blockers (ARBs), calcium channel blockers (CCBs) and diuretics) and Ang II suppressors (angiotensin-converting-enzyme inhibitors (ACEIs) and beta blockers). We evaluated stroke severity during admission with the National Institute of Health Stroke Scale (NIHSS). We performed a multivariable logistic regression with the score being dichotomized at 15. Scores of less than 15 were categorized as less severe stroke.

    RESULTS: A total of 710 patients were included. ACEIs was the most commonly prescribed antihypertensive drug in patients using Ang II suppressors (74%) and CCBs, in patients prescribed with Ang II increasers at 77%. There was no significant difference in the severity of ischemic stroke between patients who were using Ang II increasers in comparison to patients with Ang II suppressors (OR: 1.32, 95%CI: 0.83-2.10, p = 0.24).

    CONCLUSION: In our study, we found that use of antihypertensive drugs that increase Ang II formation was not associated with less severe ischemic stroke as compared to use of antihypertensive drugs that suppress Ang II formation.

    Matched MeSH terms: Angiotensin II/metabolism*; Angiotensin II/agonists
  13. Abdulla MH, Sattar MA, Abdullah NA, Khan AH, Anand Swarup KR, Rathore HA, et al.
    Ups. J. Med. Sci., 2011 Mar;116(1):18-25.
    PMID: 21047287 DOI: 10.3109/03009734.2010.526723
    This study examined the effect of renal sympathetic innervation on adrenergically and angiotensin II (Ang II)-induced renal vasoconstriction in Wistar-Kyoto (WKY) rats.
    Matched MeSH terms: Angiotensin II/pharmacology*
  14. Rehman A, Ismail SB, Naing L, Roshan TM, Abdul Rahman AR
    Am J Hypertens, 2007 Feb;20(2):184-9.
    PMID: 17261465 DOI: 10.1016/j.amjhyper.2006.07.015
    BACKGROUND: Data comparing the effect of losartan and perindopril on aortic stiffness among hypertensive subjects without A(1166)C polymorphism was not available.
    METHODS: The short-term and long-term effects of losartan (50 mg) and perindopril (4 mg) on aortic stiffness measured as carotid femoral pulse wave velocity (PWV) were compared in 39 middle-aged Malay subjects with mild-to-moderate hypertension in a 4-month, double-blind, randomized, controlled, parallel-design study.
    RESULTS: Four-month treatment with both drugs showed a significant reduction in blood pressure (BP) (P < .005) and PWV (P < .05) as compared to the baseline. On the other hand 1-month treatment showed a significant reduction in BP only in perindopril group (P < .05) but not in the losartan group. There was no significant reduction in pulse pressure and PWV after 1 month treatment by both drugs. No significant difference was seen in reduction in BP after 1 month and 4 months treatment between the two drugs. Similarly no significant difference was seen in reduction in PWV between the two drugs after 1 month (P = .613) and 4 months (P = .521) of treatment. Reduction in PWV by losartan (r = 0.470) and perindopril (r = 0.457) correlated significantly only with reduction in DBP (P < .05) and remained significant even after controlling for reduction in DBP (P < .05). Reduction in PWV by both losartan and perindopril was independent of reduction in BP by these drugs.
    CONCLUSIONS: These results showed that long-term treatment with losartan shows similar pressure independent reduction in PWV as perindopril among Malay hypertensive subjects with a homogenous "AA" genotype for angiotensin II type 1 receptor and may serve as a suitable alternative to perindopril.
    Matched MeSH terms: Angiotensin II Type 1 Receptor Blockers/therapeutic use*
  15. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Regul. Pept., 2005 Jul 15;129(1-3):213-9.
    PMID: 15927718
    The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.
    Matched MeSH terms: Angiotensin II/administration & dosage*
  16. Rehman A, Rahman AR, Rasool AH
    J Hum Hypertens, 2002 Apr;16(4):261-6.
    PMID: 11967720
    The objective of this study was to examine the effect of angiotensin II (Ang II) and angiotensin II type 1 (AT(1)) receptor blockade on pulse wave velocity (PWV) in healthy humans. We studied nine young male volunteers in a double-blind randomised crossover design. Carotid-femoral PWV (an index of arterial stiffness) was measured by using a Complior machine. Subjects were previously treated for 3 days with once-daily dose of either a placebo or valsartan 80 mg. On the third day, they were infused with either placebo or 5 ng/kg/min of Ang II over 30 min. Subjects thus received placebo capsule + placebo infusion (P), valsartan + placebo infusion (V), placebo + Ang II infusion (A), and valsartan + Ang II infusion (VA) combinations. Heart rate (HR), blood pressure and PWV were recorded at baseline and then every 10 min during infusion and once after the end of infusion. There were significant increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) with A compared with P (P = 0.002, P = 0.002, P = 0.001 respectively). These rises in blood pressure were completely blocked by valsartan. A significant rise in PWV by A was seen compared with P (8.38 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = 0.013) and was completely blocked by valsartan; VA compared with P (7.27 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = NS). Multiple linear regression analysis showed that blockade of Ang II induced increase in blood pressure by valsartan contributed to only 30% of the total reduction in Ang II induced rise in PWV (R(2) = 0.306). The conclusions were that valsartan completely blocks the effect of Ang II on PWV. The effect of Ang II on PWV is mediated through AT(1)receptors. Reduction in PWV by Ang II antagonist is not fully explained by its pressure lowering effect of Ang II and may be partially independent of its effect on blood pressure.
    Matched MeSH terms: Angiotensin II/pharmacology*
  17. Ling WC, Liu J, Lau CW, Murugan DD, Mustafa MR, Huang Y
    Biochem Pharmacol, 2017 Jul 15;136:76-85.
    PMID: 28396195 DOI: 10.1016/j.bcp.2017.04.007
    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound.
    Matched MeSH terms: Angiotensin II/toxicity*
  18. Carroll RP, Deayton S, Emery T, Munasinghe W, Tsiopelas E, Fleet A, et al.
    Hum Immunol, 2019 Aug;80(8):573-578.
    PMID: 31014826 DOI: 10.1016/j.humimm.2019.04.005
    High levels of angiotensin receptor antibodies (ATRab) are associated with acute cellular and humoral rejection, vascular occlusion, de novo human leucocyte antigen donor specific antibody (HLA DSA) and poor graft survival in kidney transplant recipients (KTR). Since 2015 we proactively managed patients "at risk" (AR) with ATRab >17 U/ml with perioperative plasma exchange (PLEX) and/or angiotensin receptor blockade (ARB). 44 patients were treated with this protocol. 265 KTR with ATRab ≤17 U/ml deemed "low risk" (LR) were transplanted under standard conditions. PLEX and ARB were not associated with increased risk of: delayed graft function requiring haemodialysis (HDx), hyperkalaemia >5.5 mmol/l requiring HDx, and the combined clinical end-point of severe hypotension, blood transfusion and re-operation for bleeding. Rejection rates were similar at 90 days: 8/44 (18%) in the AR group and 36/265 (14%) in the LR group (p = 0.350). Death censored graft survival was the same between the AR and LR groups with a 94% 48-month graft survival - hazard ratio (log-rank) 1.16 [95% CI 0.2-5.8] p = 0.844. Proactive treatment of ATRab >17 U/ml with PLEX and/or ARB is not associated with increased rates of perioperative complications and comparable rates of rejection and death censored graft survival at 4 years compared to KTR <17 U/ml ATRab.
    Matched MeSH terms: Angiotensin II Type 1 Receptor Blockers/therapeutic use*
  19. Sunggip C, Nishimura A, Shimoda K, Numaga-Tomita T, Tsuda M, Nishida M
    Pharmacol Res, 2017 Jun;120:51-59.
    PMID: 28336370 DOI: 10.1016/j.phrs.2017.03.013
    Aging has a remarkable effect on cardiovascular homeostasis and it is known as the major non-modifiable risk factor in the development of hypertension. Medications targeting sympathetic nerve system and/or renin-angiotensin-aldosterone system are widely accepted as a powerful therapeutic strategy to improve hypertension, although the control rates remain unsatisfactory especially in the elder patients with hypertension. Purinergic receptors, activated by adenine, uridine nucleotides and nucleotide sugars, play pivotal roles in many biological processes, including platelet aggregation, neurotransmission and hormone release, and regulation of cardiovascular contractility. Since clopidogrel, a selective inhibitor of G protein-coupled purinergic P2Y12 receptor (P2Y12R), achieved clinical success as an anti-platelet drug, P2YRs has been attracted more attention as new therapeutic targets of cardiovascular diseases. We have revealed that UDP-responsive P2Y6R promoted angiotensin type 1 receptor (AT1R)-stimulated vascular remodeling in mice, in an age-dependent manner. Moreover, the age-related formation of heterodimer between AT1R and P2Y6R was disrupted by MRS2578, a P2Y6R-selective inhibitor. These findings suggest that P2Y6R is a therapeutic target to prevent age-related hypertension.
    Matched MeSH terms: Angiotensin II/metabolism
  20. Tee BH, Hoe SZ, Cheah SH, Lam SK
    Biomed Res Int, 2016;2016:1361508.
    PMID: 27800486 DOI: 10.1155/2016/1361508
    Although Eurycoma longifolia has been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluated in vitro. Results showed that DCM-II reduced (p < 0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p < 0.05) while bradykinin- (BK-) induced relaxation enhanced (p < 0.001). In vitro, DCM-II inhibited (p < 0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediated via inhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.
    Matched MeSH terms: Angiotensin II/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links