Displaying publications 21 - 40 of 244 in total

Abstract:
Sort:
  1. Al-Talafha HA, Yaakop S, Idris AB
    J Med Entomol, 2018 01 10;55(1):112-121.
    PMID: 29040652 DOI: 10.1093/jme/tjx172
    Horse flies (Diptera: Tabanidae) are of medical and veterinary importance, as their blood-sucking feeding habit enables them to transmit several disease-causing agents. In Malaysia, the family Tabanidae consists of 120 species belonging to eight genera. The current study describes two new species (Chrysops idlani sp. nov. and Tabanus ekor sp. nov.) and presents new records for seven species: Tabanus fontinalisSchuurmans Stekhoven, 1926; Tabanus fuscifronsSchuurmans Stekhoven, 1926, Tabanus latifasciesSchuurmans Stekhoven, 1926, Tabanus megalops (Walker, 1854), Tabanus rhinargusPhilip, 1962, Tabanus salvazai (Surcouf, 1922), and Tabanus tristisWulp, 1881. Complete descriptions and illustrations are provided for the new species, and species variations for the new records are discussed. Male Tabanus latifasciesSchuurmans Stekhoven, 1926 and Tabanus perakiensis Ricardo, 1911 are thoroughly described herein.
    Matched MeSH terms: Animal Distribution*
  2. Mogi M, Armbruster PA, Tuno N, Aranda C, Yong HS
    J Med Entomol, 2017 11 07;54(6):1615-1625.
    PMID: 28968769 DOI: 10.1093/jme/tjx156
    We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research.
    Matched MeSH terms: Animal Distribution*
  3. Benacer D, Mohd Zain SN, Ahmed AA, Mohd Khalid MKN, Hartskeerl RA, Thong KL
    J Med Microbiol, 2016 Jun;65(6):574-577.
    PMID: 27058766 DOI: 10.1099/jmm.0.000262
    Matched MeSH terms: Animal Distribution
  4. Pramasivan S, Ngui R, Jeyaprakasam NK, Liew JWK, Low VL, Mohamed Hassan N, et al.
    Malar J, 2021 Oct 29;20(1):426.
    PMID: 34715864 DOI: 10.1186/s12936-021-03963-0
    BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies.

    METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.

    RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km.

    CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.

    Matched MeSH terms: Animal Distribution
  5. Polseela R, Jaturas N, Thanwisai A, Sing KW, Wilson JJ
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 09;27(5):3795-801.
    PMID: 26370580 DOI: 10.3109/19401736.2015.1082085
    Sandflies vary in their distributions and role in pathogen transmission. Attempts to record distributions of sandflies in Thailand have faced difficulties due to their high abundance and diversity. We aim to provide an insight into the diversity of sandflies in Thailand by (i) conducting a literature review, and (ii) DNA barcoding sandflies collected from Wihan Cave where eight morphologically characterized species were recorded. DNA barcodes generated for 193 sandflies fell into 13 distinct species clusters under four genera (Chinius, Idiophlebotomus, Phlebotomus and Sergentomyia). Five of these species could be assigned Linnaean species names unambiguously and two others corresponded to characterized morphospecies. Two species represented a complex under the name Sergentomyia barraudi while the remaining four had not been recognized before in any form. The resulting species checklist and DNA barcode library contribute to a growing set of records for sandflies which is useful for monitoring and vector control.
    Matched MeSH terms: Animal Distribution
  6. Wilson JJ, Sing KW, Chen PN, Zieritz A
    PMID: 28885060 DOI: 10.1080/24701394.2017.1373109
    Environmental DNA detection has emerged as a powerful tool to monitor aquatic species without the need for capture or visual identification and is particularly useful for rare or elusive species. Our objective was to develop an eDNA approach for detecting the southern river terrapin (Batagur affinis) in Malaysia. We designed species-specific primers for a fragment of B. affinis mtDNA and evaluated their effectiveness in silico, in vitro and in situ. The primers amplified 110 bp of the cytochrome b mtDNA sequence of B. affinis from aquarium water samples housing nine juvenile B. affinis. We also successfully detected B. affinis eDNA from river samples taken from a site where turtles were known to be in the vicinity. Prospects and challenges of using an eDNA approach to help determine the distribution of B. affinis, essential information for an effective conservation plan, are discussed.
    Matched MeSH terms: Animal Distribution*
  7. Jasper M, Schmidt TL, Ahmad NW, Sinkins SP, Hoffmann AA
    Mol Ecol Resour, 2019 Sep;19(5):1254-1264.
    PMID: 31125998 DOI: 10.1111/1755-0998.13043
    Understanding past dispersal and breeding events can provide insight into ecology and evolution and can help inform strategies for conservation and the control of pest species. However, parent-offspring dispersal can be difficult to investigate in rare species and in small pest species such as mosquitoes. Here, we develop a methodology for estimating parent-offspring dispersal from the spatial distribution of close kin, using pairwise kinship estimates derived from genome-wide single nucleotide polymorphisms (SNPs). SNPs were scored in 162 Aedes aegypti (yellow fever mosquito) collected from eight close-set, high-rise apartment buildings in an area of Malaysia with high dengue incidence. We used the SNPs to reconstruct kinship groups across three orders of kinship. We transformed the geographical distances between all kin pairs within each kinship category into axial standard deviations of these distances, then decomposed these into components representing past dispersal events. From these components, we isolated the axial standard deviation of parent-offspring dispersal and estimated neighbourhood area (129 m), median parent-offspring dispersal distance (75 m) and oviposition dispersal radius within a gonotrophic cycle (36 m). We also analysed genetic structure using distance-based redundancy analysis and linear regression, finding isolation by distance both within and between buildings and estimating neighbourhood size at 268 individuals. These findings indicate the scale required to suppress local outbreaks of arboviral disease and to target releases of modified mosquitoes for mosquito and disease control. Our methodology is readily implementable for studies of other species, including pests and species of conservation significance.
    Matched MeSH terms: Animal Distribution
  8. Osuri AM, Ratnam J, Varma V, Alvarez-Loayza P, Hurtado Astaiza J, Bradford M, et al.
    Nat Commun, 2016 04 25;7:11351.
    PMID: 27108957 DOI: 10.1038/ncomms11351
    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical data set, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth's tropical forests. In our simulations, African, American and South Asian forests, which have high proportions of animal-dispersed species, consistently show carbon losses (2-12%), but Southeast Asian and Australian forests, where there are more abiotically dispersed species, show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (∼2,100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. Thus, floristic differences and distinct dispersal mode-seed size-adult size combinations can drive contrasting regional responses to defaunation.
    Matched MeSH terms: Animal Distribution*
  9. Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al.
    Nat Ecol Evol, 2017 Nov;1(11):1677-1682.
    PMID: 28993667 DOI: 10.1038/s41559-017-0332-2
    The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.
    Matched MeSH terms: Animal Distribution*
  10. Sum JS, Lee WC, Amir A, Braima KA, Jeffery J, Abdul-Aziz NM, et al.
    Parasit Vectors, 2014;7:309.
    PMID: 24993022 DOI: 10.1186/1756-3305-7-309
    Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene.
    Matched MeSH terms: Animal Distribution*
  11. Gauffre-Autelin P, von Rintelen T, Stelbrink B, Albrecht C
    Parasit Vectors, 2017 03 06;10(1):126.
    PMID: 28264699 DOI: 10.1186/s13071-017-2043-6
    BACKGROUND: The planorbid snail Indoplanorbis exustus is the sole intermediate host for the Schistosoma indicum species group, trematode parasites responsible for cattle schistosomiasis and human cercarial dermatitis. This freshwater snail is widely distributed in Southern Asia, ranging from Iran to China eastwards including India and from the southeastern Himalayas to Southeast Asia southwards. The veterinary and medical importance of this snail explains the interest in understanding its geographical distribution patterns and evolutionary history. In this study, we used a large and comprehensive sampling throughout Indo-Malaya, including specimens from South India and Indonesia, areas that have been formerly less studied.

    RESULTS: The phylogenetic inference revealed five highly divergent clades (genetic distances among clades: 4.4-13.9%) that are morphologically indistinguishable, supporting the assumption that this presumed nominal species may represent a cryptic species complex. The species group may have originated in the humid subtropical plains of Nepal or in southern adjacent regions in the Early Miocene. The major cladogenetic events leading to the fives clades occurred successively from the Early Miocene to the Early Pleistocene, coinciding with major periods of monsoonal intensification associated with major regional paleogeographic events in the Miocene and repeated climate changes due to the Plio-Pleistocene climatic oscillations. Our coverage of the Indo-Australian Archipelago (IAA) highlights the presence of a single clade there. Contrary to expectations, an AMOVA did not reveal any population genetic structure among islands or along a widely recognised zoogeographical regional barrier, suggesting a recent colonisation independent of natural biogeographical constraints. Neutrality tests and mismatch distributions suggested a sudden demographic and spatial population expansion that could have occurred naturally in the Pleistocene or may possibly result of a modern colonisation triggered by anthropogenic activities.

    CONCLUSIONS: Even though Indoplanorbis is the main focus of this study, our findings may also have important implications for fully understanding its role in hosting digenetic trematodes. The existence of a cryptic species complex, the historical phylogeographical patterns and the recent range expansion in the IAA provide meaningful insights to the understanding and monitoring of the parasites potential spread. It brings a substantial contribution to veterinary and public health issues.

    Matched MeSH terms: Animal Distribution
  12. Young KI, Mundis S, Widen SG, Wood TG, Tesh RB, Cardosa J, et al.
    Parasit Vectors, 2017 Aug 31;10(1):406.
    PMID: 28859676 DOI: 10.1186/s13071-017-2341-z
    BACKGROUND: Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape.

    RESULTS: Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing.

    CONCLUSIONS: Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.

    Matched MeSH terms: Animal Distribution
  13. Srisuka W, Takaoka H, Otsuka Y, Fukuda M, Thongsahuan S, Taai K, et al.
    Parasit Vectors, 2017 Nov 21;10(1):574.
    PMID: 29157269 DOI: 10.1186/s13071-017-2492-y
    BACKGROUND: Blackflies are an important medical and veterinary group of small blood-sucking insects. Ninety-three blackfly species have been reported in Thailand. However, information on their biodiversity and population dynamics in each region is lacking. The main aim of this study was to assess the regional biodiversity, seasonal abundance and distribution of blackflies in six eco-geographically different regions in the country.

    METHODS: Blackfly larvae and pupae were sampled monthly from 58 sites between May 2011 and April 2013. Diversity parameters, seasonal abundance, regional distribution and frequency of species occurrence in stream sites were analyzed.

    RESULTS: A total of 19,456 mature larvae representing 57 species, and belonging to six subgenera in the genus Simulium Latreille (s.l.), were found. The five predominant taxa were S. fenestratum (8.6%), the S. asakoae complex (8.3%), S. nakhonense (7.5%), the S. siamense complex (7.4%) and the S. doipuiense complex (6.7%). The most frequent taxa at all sites were the S. asakoae complex (84.5%), followed by S. fenestratum (82.8%), the S. siamense complex (75.9%), S. decuplum (60.3%), S. nakhonense (58.6%) and the S. tani complex (48.3%). The richness of regional species was highest (40 species) in the north and predominated in the cold season. However, blackflies in the south predominated during the hot season. The highest numbers of blackflies collected from central, northeastern, eastern and western regions of the country were observed in the rainy season. Overall, the mean number of blackflies collected across the six regions during the rainy and cold season had no statistically significant difference, but it differed significantly in the hot season.

    CONCLUSIONS: Blackflies in Thailand were surveyed in all three seasons across six geographical regions. These findings demonstrated that blackfly communities at each stream site varied with seasonality, and the regional relative abundance of blackflies differed markedly in the hot season. It was also found that the occurrence and distribution of blackflies in each region were associated strongly with elevation.

    Matched MeSH terms: Animal Distribution*
  14. Ya'cob Z, Takaoka H, Pramual P, Low VL, Sofian-Azirun M
    Parasit Vectors, 2016 Apr 19;9:219.
    PMID: 27094088 DOI: 10.1186/s13071-016-1492-7
    BACKGROUND: Preimaginal black flies (Diptera: Simuliidae) are important components of the stream ecosystem. However, there has been limited research undertaken on the vertical distribution of preimaginal black flies and their associated ecological factors. Stream conditions are generally variable along the altitudinal gradient. Therefore, we conducted an in-depth entomological survey to investigate the simuliid distribution pattern along an altitudinal gradient in Peninsular Malaysia.

    METHODS: A total of 432 collections were performed in this study (24 samplings at each of 18 fixed-streams at monthly intervals) from February 2012 to January 2014. Larvae and pupae attached on aquatic substrates such as grasses, leaves and stems, twigs, plant roots and rocks were collected by hand using fine forceps. Stream depth (m), width (m), velocity (m/s), water temperature (°C), acidity (pH), conductivity (mS/cm) and dissolved oxygen (mg/L) were measured at the time of each collection.

    RESULTS: A total of 35 black fly species were recorded in the present study. The most frequently collected species were Simulium tani (31.7%) and S. whartoni (21.5%), while the relatively common species were Simulium sp. (nr. feuerborni) (16.2%), S. decuplum (15.5%), S. angulistylum (14.8%), S. bishopi (13.2%) and S. izuae (11.8%). Total estimated species richness ranged between 39.8 and 41.3, which yielded more than 80% of sampling efficiency. Six simuliid species were distributed below 500 m, whereas eight species were distributed above 1400 m. Simulium sp. (nr. feuerborni) and S. asakoae were found from middle to high altitudes (711-1813 m). Simulium whartoni, S. brevipar and S. bishopi were distributed widely from low to high altitudes (159-1813 m). Regression analysis between species richness and PCs revealed that the species richness was significantly associated with wider, deeper and faster streams at low altitude, normal water temperature (23-25 °C), low conductivity, higher discharge, more canopy cover and riparian vegetation and with larger streambed particles (F = 20.8, df = 1, 422, P 

    Matched MeSH terms: Animal Distribution*
  15. Jimi N, Nakajima H, Sato T, Gonzalez BC, Woo SP, Rouse GW, et al.
    PeerJ, 2023;11:e16346.
    PMID: 37927790 DOI: 10.7717/peerj.16346
    Two new species of Hesionidae, Parahesione pulvinata sp. nov. and Parahesione apiculata sp. nov. are described based on materials collected at tidal flats in Okinawa (Japan) from burrows of the ghost shrimps Neocallichirus jousseaumei and Glypturus armatus. The two new species are characterized by having eight enlarged cirri, dorsal cirrophores with dorsal foliose lobe and biramous parapodia, and by lacking median antenna. Parahesione apiculata sp. nov. has digitate lobes on the posterior margin of the dorsal foliose lobe (absent in P. pulvinata sp. nov.). The two new species were never found outside the ghost shrimp burrows, suggesting they are obligate symbionts. Phylogenetic analyses based on four concatenated genes suggest that the symbiotic lifestyle has evolved several times in Hesionidae.
    Matched MeSH terms: Animal Distribution
  16. Yin ZW, Li LZ
    PLoS One, 2014;9(11):e113474.
    PMID: 25409318 DOI: 10.1371/journal.pone.0113474
    A new genus and species of the subtribe Batrisina from western Sarawak, Bryantinus matangus gen. et sp. n., is described, illustrated, and compared with related taxa. In addition, examination of a small series of batrisine material from Thailand revealed a new country record for Cerochusa cilioceps Yin & Nomura, which was previously known only from the island of Hainan in southern China.
    Matched MeSH terms: Animal Distribution
  17. Mokhtari M, Ghaffar MA, Usup G, Cob ZC
    PLoS One, 2015;10(1):e0117467.
    PMID: 25629519 DOI: 10.1371/journal.pone.0117467
    In tropical regions, different species of fiddler crabs coexist on the mangrove floor, which sometimes makes it difficult to define species-specific habitat by visual inspection. The aim of this study is to find key environmental parameters which affect the distribution of fiddler crabs and to determine the habitats in which each species was most abundant. Crabs were collected from 19 sites within the mudflats of Sepang-Lukut mangrove forest. Temperature, porewater salinity, organic matter, water content, carbon and nitrogen content, porosity, chlorophyll content, pH, redox potential, sediment texture and heavy metals were determined in each 1 m2 quadrate. Pearson correlation indicated that all sediment properties except pH and redox potential were correlated with sediment grain size. Canonical correspondence analysis (CCA) indicated that Uca paradussumieri was negatively correlated with salinity and redox potential. Sand dwelling species, Uca perplexa and Uca annulipes, were highly dependent on the abundance of 250 μm and 150 μm grain size particles in the sediment. Canonical Discriminative Analysis (CDA) indicated that variation in sediment grain size best explained where each crab species was most abundant. Moreover, U. paradussumieri commonly occupies muddy substrates of low shore, while U. forcipata lives under the shade of mangrove trees. U. annulipes and U. perplexa with the high number of spoon tipped setae on their second maxiliped are specialized to feed on the sandy sediments. U. rosea and U. triangularis are more common on muddy sediment with high sediment density. In conclusion, sediment grain size that influences most sediment properties acts as a main factor responsible for sediment heterogeneity. In this paper, the correlation between fiddler crab species and environmental parameters, as well as the interaction between sediment characteristics, was explained in order to define the important environmental factors in fiddler crab distributions.
    Matched MeSH terms: Animal Distribution*
  18. Lacroix R, McKemey AR, Raduan N, Kwee Wee L, Hong Ming W, Guat Ney T, et al.
    PLoS One, 2012;7(8):e42771.
    PMID: 22970102 DOI: 10.1371/journal.pone.0042771
    Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field.
    Matched MeSH terms: Animal Distribution
  19. Sota T, Belton P, Tseng M, Yong HS, Mogi M
    PLoS One, 2015;10(6):e0131230.
    PMID: 26107619 DOI: 10.1371/journal.pone.0131230
    The coastal mosquito Aedes togoi occurs more or less continuously from subarctic to subtropic zones along the coasts of the Japanese islands and the East Asian mainland. It occurs also in tropical Southeast Asia and the North American Pacific coast, and the populations there are thought to have been introduced from Japan by ship. To test this hypothesis, the genetic divergence among geographic populations of A. togoi was studied using one mitochondrial and three nuclear gene sequences. We detected 71 mitochondrial haplotypes forming four lineages, with high nucleotide diversity around temperate Japan and declining towards peripheral ranges. The major lineage (L1) comprised 57 haplotypes from temperate and subarctic zones in Japan and Southeast Asia including southern China and Taiwan. Two other lineages were found from subtropical islands (L3) and a subarctic area (L4) of Japan. The Canadian population showed one unique haplotype (L2) diverged from the other lineages. In the combined nuclear gene tree, individuals with mitochondrial L4 haplotypes diverged from those with the other mitochondrial haplotypes L1-L3; although individuals with L1-L3 haplotypes showed shallow divergences in the nuclear gene sequences, individuals from Southeast Asia and Canada each formed a monophyletic group. Overall, the genetic composition of the Southeast Asian populations was closely related to that of temperate Japanese populations, suggesting recent gene flow between these regions. The Canadian population might have originated from anthropogenic introduction from somewhere in Asia, but the possibility that it could have spread across the Beringian land bridge cannot be ruled out.
    Matched MeSH terms: Animal Distribution*
  20. Verutes GM, Johnson AF, Caillat M, Ponnampalam LS, Peter C, Vu L, et al.
    PLoS One, 2020;15(8):e0237835.
    PMID: 32817725 DOI: 10.1371/journal.pone.0237835
    Fisheries bycatch has been identified as the greatest threat to marine mammals worldwide. Characterizing the impacts of bycatch on marine mammals is challenging because it is difficult to both observe and quantify, particularly in small-scale fisheries where data on fishing effort and marine mammal abundance and distribution are often limited. The lack of risk frameworks that can integrate and visualize existing data have hindered the ability to describe and quantify bycatch risk. Here, we describe the design of a new geographic information systems tool built specifically for the analysis of bycatch in small-scale fisheries, called Bycatch Risk Assessment (ByRA). Using marine mammals in Malaysia and Vietnam as a test case, we applied ByRA to assess the risks posed to Irrawaddy dolphins (Orcaella brevirostris) and dugongs (Dugong dugon) by five small-scale fishing gear types (hook and line, nets, longlines, pots and traps, and trawls). ByRA leverages existing data on animal distributions, fisheries effort, and estimates of interaction rates by combining expert knowledge and spatial analyses of existing data to visualize and characterize bycatch risk. By identifying areas of bycatch concern while accounting for uncertainty using graphics, maps and summary tables, we demonstrate the importance of integrating available geospatial data in an accessible format that taps into local knowledge and can be corroborated by and communicated to stakeholders of data-limited fisheries. Our methodological approach aims to meet a critical need of fisheries managers: to identify emergent interaction patterns between fishing gears and marine mammals and support the development of management actions that can lead to sustainable fisheries and mitigate bycatch risk for species of conservation concern.
    Matched MeSH terms: Animal Distribution
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links