Based on recent field sampling in the highlands of western Sabah, a new species of Depressacca Ingrisch, 1998 (Conocephalinae: Agraeciini) is described from Tenompok, Depressacca macrolima sp. nov., that can be easily distinguish from two other known congeners by the presence of numerous large and falcate spines on the legs numerous large and falcate spines on its legs. Based on the new material, we also document here the live images and/or new locality records for other katydids of the tribes Agraeciini and Meconematini: Bispinolakis longicauda Ingrisch, 1998, Palaeoagraecia philippina (Karny, 1926) and Salomona borneensis Willemse, 1959; Alloteratura (Meconemopsis) longa Gorochov, 2008, Borneratura kinabaluana (Bey-Bienko, 1971) and Rhinoteratura pulchra Gorochov, 2008.
In tropical regions, different species of fiddler crabs coexist on the mangrove floor, which sometimes makes it difficult to define species-specific habitat by visual inspection. The aim of this study is to find key environmental parameters which affect the distribution of fiddler crabs and to determine the habitats in which each species was most abundant. Crabs were collected from 19 sites within the mudflats of Sepang-Lukut mangrove forest. Temperature, porewater salinity, organic matter, water content, carbon and nitrogen content, porosity, chlorophyll content, pH, redox potential, sediment texture and heavy metals were determined in each 1 m2 quadrate. Pearson correlation indicated that all sediment properties except pH and redox potential were correlated with sediment grain size. Canonical correspondence analysis (CCA) indicated that Uca paradussumieri was negatively correlated with salinity and redox potential. Sand dwelling species, Uca perplexa and Uca annulipes, were highly dependent on the abundance of 250 μm and 150 μm grain size particles in the sediment. Canonical Discriminative Analysis (CDA) indicated that variation in sediment grain size best explained where each crab species was most abundant. Moreover, U. paradussumieri commonly occupies muddy substrates of low shore, while U. forcipata lives under the shade of mangrove trees. U. annulipes and U. perplexa with the high number of spoon tipped setae on their second maxiliped are specialized to feed on the sandy sediments. U. rosea and U. triangularis are more common on muddy sediment with high sediment density. In conclusion, sediment grain size that influences most sediment properties acts as a main factor responsible for sediment heterogeneity. In this paper, the correlation between fiddler crab species and environmental parameters, as well as the interaction between sediment characteristics, was explained in order to define the important environmental factors in fiddler crab distributions.
The simuliid fauna of the Oriental Region is reviewed in comparison with those in five other zoogeographical regions. It is relatively young, represented by only one genus Simulium, which is regarded as the most specialized among 26 genera of the family Simuliidae. The Oriental Region has the second largest simuliid fauna with 524 species or 23.8% of the world total of 2204 extant species. This species richness is associated with a high speciation index (15.4), reflected especially by the high speciation rates of two dominant subgenera Gomphostilbia and Simulium although the number of lineages in the Oriental Region is moderate (34 or 20.6% of the total 165). The Oriental fauna has relationships with all other zoogeographical regions at the lineage level, having the highest affinity index (31.9) with the Palearctic Region. It is inferred that eight of 10 Oriental subgenera moved during the ice ages from the Palaearctic to the Oriental Regions; the subgenus Gomphostilbia evolved into 11 species-groups and underwent species radiation in the Oriental Region. On the other hand, two other subgenera, Nevermannia and Simulium, moved southward during the ice ages after evolving into species-groups. In the post-ice ages, most lineages retreated northward, with different portions of species left in the Oriental Region, although some lineages failed to retreat and survived as relict lineages in the Oriental Region.
Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene.
Pairwise similarity coefficients are downward biased when samples only record presences and sampling is partial. A simple but forgotten index proposed by Stephen Forbes in 1907 can help solve this problem. His original equation requires knowing the number of species absent in both samples that could have been present. It is proposed that this count should simply be ignored and that the coefficient should be adjusted using a simple heuristic correction. Four analyses show that the corrected equation outperforms the Dice and Simpson indices, which are highly correlated with many others. In two-sample simulations, similarity is almost always closer to the assumed value when the species pool size and sampling intensity are varied, regardless of whether the underlying abundance distribution is uniform, log-normal, or geometric. The index is also much more robust when sampling is unequal. An analysis of bat samples from peninsular Malaysia buttresses these conclusions. The corrected coefficient also indicates that local assemblages of North American mammals are random subsamples of larger species pools by returning similarity of values of around 1, and it suggests a more consistent relationship between biome-scale comparisons and local-scale comparisons. Finally, it yields a better-dispersed pattern when the biome-scale inventories are ordinated. If these results are generalizable, then the new and old equation should see wide application, potentially taking the place of the two most commonly used alternatives (the interrelated Dice and Jaccard indices) whenever sampling is incomplete.
Loss of dispersal typifies island biotas, but the selective processes driving this phenomenon remain contentious. This is because selection via, both indirect (e.g. relaxed selection or island syndromes) and direct (e.g. natural selection or spatial sorting) processes may be involved, and no study has yet convincingly distinguished between these alternatives. Here, we combined observational and experimental analyses of an island lizard, the Komodo dragon (Varanus komodoensis, the world's largest lizard), to provide evidence for the actions of multiple processes that could contribute to island dispersal loss. In the Komodo dragon, concordant results from telemetry, simulations, experimental translocations, mark-recapture, and gene flow studies indicated that despite impressive physical and sensory capabilities for long-distance movement, Komodo dragons exhibited near complete dispersal restriction: individuals rarely moved beyond the valleys they were born/captured in. Importantly, lizard site-fidelity was insensitive to common agents of dispersal evolution (i.e. indices of risk for inbreeding, kin and intraspecific competition, and low habitat quality) that consequently reduced survival of resident individuals. We suggest that direct selection restricts movement capacity (e.g. via benefits of spatial philopatry and increased costs of dispersal) alongside use of dispersal-compensating traits (e.g. intraspecific niche partitioning) to constrain dispersal in island species.
Functional diversity is an integrative approach to better understand biodiversity across space and time. In the present study, we investigated the spatiotemporal patterns (i.e., elevation and season) and environmental determinants of anuran functional diversity on Tianping Mountain, northwest Hunan, China. Specifically, 10 transects were established from low (300 m a.s.l.) to high (1 492 m a.s.l.) elevations, and anuran communities were sampled in spring, early summer, midsummer, and autumn in 2017. Four functional diversity indices were computed for each transect in each season using ecomorphological functional traits. Our results demonstrated that these indices had contrasting responses to increasing elevations. However, they did not differ significantly among seasons in terms of temporal patterns. Interestingly, the unique spatiotemporal functional diversity patterns were impacted by distinct environmental variables, such as leaf litter cover, water temperature, number of trees, and water conductivity.
Horse flies (Diptera: Tabanidae) are of medical and veterinary importance, as their blood-sucking feeding habit enables them to transmit several disease-causing agents. In Malaysia, the family Tabanidae consists of 120 species belonging to eight genera. The current study describes two new species (Chrysops idlani sp. nov. and Tabanus ekor sp. nov.) and presents new records for seven species: Tabanus fontinalisSchuurmans Stekhoven, 1926; Tabanus fuscifronsSchuurmans Stekhoven, 1926, Tabanus latifasciesSchuurmans Stekhoven, 1926, Tabanus megalops (Walker, 1854), Tabanus rhinargusPhilip, 1962, Tabanus salvazai (Surcouf, 1922), and Tabanus tristisWulp, 1881. Complete descriptions and illustrations are provided for the new species, and species variations for the new records are discussed. Male Tabanus latifasciesSchuurmans Stekhoven, 1926 and Tabanus perakiensis Ricardo, 1911 are thoroughly described herein.
Song plays a fundamental role in intraspecific communication in songbirds. The temporal and structural components of songs can vary in different habitats. These include urban habitats where anthropogenic sounds and alteration of habitat structure can significantly affect songbird vocal behavior. Urban-rural variations in song complexity, song length and syllable rate are not fully understood. In this study, using the oriental magpie-robin (Copsychus saularis) as a model, we investigated urban-rural variation in song complexity, song length, syllable rate, syllable length and inter-syllable interval. Comparing urban and rural songs from 7 countries across its natural Asiatic range (Bangladesh, India, Malaysia, Nepal, Singapore, Sri Lanka and Thailand), we found no significant differences in oriental magpie-robin song complexity. However, we found significant differences in temporal song variables between urban and rural sites. Longer songs and inter-syllable intervals in addition to slower syllable rates within urban sites contributed the most to this variance. This indicates that the urban environment may have driven production of longer and slower songs to maximize efficient transmission of important song information in urban habitats.
The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.
Understanding social organization is fundamental for the analysis of animal societies. In this study, animal single-file movement data-serialized order movements generated by simple bottom-up rules of collective movements-are informative and effective observations for the reconstruction of animal social structures using agent-based models. For simulation, artificial 2-dimensional spatial distributions were prepared with the simple assumption of clustered structures of a group. Animals in the group are either independent or dependent agents. Independent agents distribute spatially independently each one another, while dependent agents distribute depending on the distribution of independent agents. Artificial agent spatial distributions aim to represent clustered structures of agent locations-a coupling of "core" or "keystone" subjects and "subordinate" or "follower" subjects. Collective movements were simulated following two simple rules, 1) initiators of the movement are randomly chosen, and 2) the next moving agent is always the nearest neighbor of the last moving agents, generating "single-file movement" data. Finally, social networks were visualized, and clustered structures reconstructed using a recent major social network analysis (SNA) algorithm, the Louvain algorithm, for rapid unfolding of communities in large networks. Simulations revealed possible reconstruction of clustered social structures using relatively minor observations of single-file movement, suggesting possible application of single-file movement observations for SNA use in field investigations of wild animals.
A new ophichthid worm-eel, Neenchelys gracilis sp. nov., is described from a specimen collected from southwestern Taiwan. It differs from its congeners by having: a minute pectoral fin, many filamentous cirri on the anterior nostril rim; a very slender body; a very small gill opening; and a vertebral formula of 30-78-200.
Six species in the genus Busonia Distant are described and illustrated, including five new species from Thailand and Malaysia: Busonia curvata, B. fusca, B. lactata, B. micrata, B. serrata, spp. nov., and one newly recorded species from China: Busonia albilateralis Maldonado-Capriles. A redescription of this genus is provided together with a key to species for separation of males.
We consider the genus Janohyphella Selvakumar, Sivaramakrishnan & Jacobus, 2014 (Ephemeroptera:Teloganodidae) to be a new junior synonym of Teloganella Ulmer, 1939 [=Janohyphella, syn. n.] based on comparative examination of new and previously studied materials from Malaysia and India. Thus, we propose the following new combination, Teloganella indica, comb. n., and provide new or modified diagnoses for this species, T. umbrata Ulmer, 1939 and the genus Teloganella Ulmer, 1939.
Two new species of Paraneseuthia are described from peninsular Malaysia: P. joeparkeri sp. n. from Bukit Larut (Maxwell Hill) and P. titiwangsana sp. n. from the Genting Highlands. The new species are morphologically allied to species known so far only from Sumatra; they all share emarginate apex of the aedeagus bordered at each side by a subtriangular projection and a pair of setae. This is the first record of this eutheiine genus from the Malay Peninsula and extends the known diversity of Paraneseuthia species within the historical Sundaland area.
The genus Lichnofugia is reported for the first time from India with a description of Lichnofugia umshingensis sp. nov. from Shillong, Meghalaya. The distribution of Lichnofugia thus extends eastward from Peninsular Malaysia and Thailand to north- eastern India.
Species of the genus Scirtothrips are studied from Malaysia for the first time. Six species of this genus are here recorded from Malaysia: S. dobroskyi is newly recorded, and four new species: S. lantanae sp.n., S. lixinae sp.n., S. hitam sp.n. and S. malayensis sp.n. are described together with an illustrated identification key. Relationships were examined between S. dorsalis and the closely related S. hitam sp.n., based on the mitochondrial gene COI, and a redescription of the widespread pest species, dorsalis, is provided. Biltothrips minutus (Bhatti) is reported from Malaysia for the first time, and illustrations provided to distinguish this genus from Scirtothrips.
Scoloposcelis seidaii sp. nov. is described from the Malay Peninsula based on a single specimen collected under the bark of a decaying tree. This discovery represents the first distribution record of the genus Scoloposcelis from Malaysia. Habitus photographs and diagnosis of S. parallela (Motschulsky, 1863) are provided for comparison with S. seidaii.
Miyagiella Harbach, subgen. nov., is introduced as a new subgenus of Topomyia Leicester for a remarkable male mosquito, Topomyia discors Harbach, sp. nov., from Sabah, Malaysia. A diagnosis of the subgenus is provided that features unique anatomical characters of the genitalia of the holotype male. Miyagiella is very distinct from the two previously recognised subgenera of Topomyia, but is perhaps more closely related to the nominotypical subgenus than to subgenus Suaymyia Thurman. Salient differences that distinguish the three subgenera are contrasted; the holotype male of To. discors is described and its unique genitalia are illustrated.
Eleven taxa including one new species of gammaridean amphipods are reported from the waters of Pulau Tioman. The presence of Tethygeneia sunda sp. n. represents the first record of the genus from the South China Sea. Additional material of Ampelisca brevicornis (Costa, 1853); Cymadusa vadosa Imbach, 1967; Paradexamine setigera Hirayama, 1984; Ericthonius pugnax (Dana, 1853); Leucothoe furina (Savigny, 1816); Microlysias xenokeras (Stebbing, 1918); Monoculodes muwoni Jo, 1990 are identified from the South China Sea, supporting previous records by Lowry (2000), Huang (1994), Imbach (1967), Margulis (1968) and Nagata (1959). Three additional species, Gitanopsis pusilla K.H. Barnard, 1916, Liljeborgia japonica Nagata, 1965b and Latigammaropsis atlantica (Stebbing, 1888), whilst previously reported from the neighbouring waters, comprise new records for the South China Sea.