Displaying publications 21 - 40 of 241 in total

Abstract:
Sort:
  1. Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N, et al.
    Appl Microbiol Biotechnol, 2011 Mar;89(5):1373-86.
    PMID: 21279347 DOI: 10.1007/s00253-011-3098-5
    Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner.
    Matched MeSH terms: Biotechnology/methods*
  2. Syafiq IM, Huong KH, Shantini K, Vigneswari S, Aziz NA, Amirul AA, et al.
    Enzyme Microb Technol, 2017 Mar;98:1-8.
    PMID: 28110659 DOI: 10.1016/j.enzmictec.2016.11.011
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is noted for its high biocompatibility, which makes it an excellent candidate for biopharmaceutical applications. The wild-type Cupriavidus sp. USMAA1020 strain is able to synthesize P(3HB-co-4HB) copolymers with different 4HB monomer compositions (up to 70mol%) in shaken flask cultures. Combinations of 4HB carbon precursors consisting of 1,6-hexanediol and γ-butyrolactone were applied for the production of P(3HB-co-4HB) with different 4HB molar fraction. A sharp increase in 4HB monomer composition was attained by introducing additional copies of PHA synthase gene (phaC), responsible for P(3HB-co-4HB) polymerization. The phaC of Cupriavidus sp. USMAA1020 and Cupriavidus sp. USMAA2-4 were cloned and heterologously introduced into host, wild-type Cupriavidus sp. USMAA1020. The gene dosage treatment resulted in the accumulation of 93mol% 4HB by the transformant strains when grown in similar conditions as the wild-type USMAA1020. The PHA synthase activities for both transformants were almost two-fold higher than the wild-type. The ability of the transformants to produce copolymers with high 4HB monomer composition was also tested in large scale production system using 5L and 30L bioreactors with a constant oxygen mass transfer rate. The 4HB monomer composition could be maintained at a range of 83-89mol%. The mechanical and thermal properties of copolymers improved with increasing 4HB monomer composition. The copolymers produced could be tailored for specific biopharmaceutical applications based on their properties.
    Matched MeSH terms: Biotechnology
  3. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Feb;102(4):3819-26.
    PMID: 21183335 DOI: 10.1016/j.biortech.2010.11.100
    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.
    Matched MeSH terms: Biotechnology/methods*
  4. Opitz L, Lehmann S, Reichl U, Wolff MW
    Biotechnol Bioeng, 2009 Aug 15;103(6):1144-54.
    PMID: 19449393 DOI: 10.1002/bit.22345
    Strategies to control outbreaks of influenza, a contagious respiratory tract disease, are focused mainly on prophylactic vaccinations in conjunction with antiviral medications. Currently, several mammalian cell culture-based influenza vaccine production processes are being established, such as the technologies introduced by Novartis Behring (Optaflu) or Baxter International Inc. (Celvapan). Downstream processing of influenza virus vaccines from cell culture supernatant can be performed by adsorbing virions onto sulfated column chromatography beads, such as Cellufine sulfate. This study focused on the development of a sulfated cellulose membrane (SCM) chromatography unit operation to capture cell culture-derived influenza viruses. The advantages of the novel method were demonstrated for the Madin Darby canine kidney (MDCK) cell-derived influenza virus A/Puerto Rico/8/34 (H1N1). Furthermore, the SCM-adsorbers were compared directly to column-based Cellufine sulfate and commercially available cation-exchange membrane adsorbers. Sulfated cellulose membrane adsorbers showed high viral product recoveries. In addition, the SCM-capture step resulted in a higher reduction of dsDNA compared to the tested cation-exchange membrane adsorbers. The productivity of the SCM-based unit operation could be significantly improved by a 30-fold increase in volumetric flow rate during adsorption compared to the bead-based capture method. The higher flow rate even further reduced the level of contaminating dsDNA by about twofold. The reproducibility and general applicability of the developed unit operation were demonstrated for two further MDCK cell-derived influenza virus strains: A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004. Overall, SCM-adsorbers represent a powerful and economically favorable alternative for influenza virus capture over conventional methods using Cellufine sulfate.
    Matched MeSH terms: Biotechnology/methods*
  5. Lim, Yi-Yi, Lee, Wei-Kang, Leow, Adam Thean-Chor, Parameswari Namasivayam, Janna-Ong Abdullah, Ho, Chai-Ling
    MyJurnal
    Red seaweeds (Rhodophyta) produce a variety of sulfated galactans in their cell wall matrix and intercellular space, contributing up to 50-60 % of their total dry weight. These sulfated polysaccharides are made up of galactose disaccharides substituted with sulfate, methoxyl, pyruvic acid, or non-galactose monosaccharides (e.g. xylose, glucose and mannose). They are required by the Rhodophytes for protection against pathogen, desiccation, tidal waves and extreme changes in pH, temperature and salinity. Since ancient times, sulfated galactans from red seaweeds, such as agar and carrageenan, have been consumed as human foods and later being used in traditional medicine. Nowadays, some red seaweeds are cultivated and exploited for commercial uses in various fields. In this review, different types of sulfated galactans found in red seaweeds and their current and potential uses in food, biotechnology, medical and pharmaceutical industries are discussed.
    Matched MeSH terms: Biotechnology
  6. Mazaheri H, Lee KT, Bhatia S, Mohamed AR
    Bioresour Technol, 2010 Dec;101(23):9335-41.
    PMID: 20656481 DOI: 10.1016/j.biortech.2010.07.004
    Thermal decomposition of oil palm fruit press fiber (FPF) into a liquid product (LP) was achieved using subcritical water treatment in the presence of sodium hydroxide in a high pressure batch reactor. This study uses experimental design and process optimisation tools to maximise the LP yield using response surface methodology (RSM) with central composite rotatable design (CCRD). The independent variables were temperature, residence time, particle size, specimen loading, and additive loading. The mathematical model that was developed fit the experimental results well for all of the response variables that were studied. The optimal conditions were found to be a temperature of 551 K, a residence time of 40 min, a particle size of 710-1000 microm, a specimen loading of 5 g, and a additive loading of 9 wt.% to achieve a LP yield of 76.16%.
    Matched MeSH terms: Biotechnology/methods*
  7. Thiruvenkadam S, Izhar S, Hiroyuki Y, Harun R
    Biomed Res Int, 2018;2018:1931634.
    PMID: 30533428 DOI: 10.1155/2018/1931634
    Subcritical water extraction (SCW) was used to extract oil from Chlorella pyrenoidosa. The operational factors such as reaction temperature, reaction time, and biomass loading influence the oil yield during the extraction process. In this study, response surface methodology was employed to identify the desired extraction conditions for maximum oil yield. Experiments were carried out in batch reactors as per central composite design with three independent factors including reaction temperature (170, 220, 270, 320, and 370°C), reaction time (1, 5, 10, 15, and 20 min), and biomass loading (1, 3, 5, 10, and 15%). A maximum oil yield of 12.89 wt.% was obtained at 320°C and 15 min, with 3% biomass loading. Sequential model tests showed the good fit of experimental data to the second-order quadratic model. This study opens the great potential of SCW to extract algal oil for use in algal biofuel production.
    Matched MeSH terms: Biotechnology/methods*
  8. Mazaheri H, Lee KT, Bhatia S, Mohamed AR
    Bioresour Technol, 2010 Oct;101(19):7641-7.
    PMID: 20510608 DOI: 10.1016/j.biortech.2010.04.072
    Thermal decomposition of oil palm fruit press fiber (FPF) with sub/supercritical methanol, ethanol, acetone, and 1,4-dioxane treatments were investigated using a high-pressure autoclave reactor. When FPF was decomposed with methanol, ethanol, and acetone from 483 to 603 K, the highest degree of conversion obtained were 81.5%, 77.8%, and 67.9% while the highest liquid product yield (LP) obtained were 38.0%, 36.9%, and 38.5%, respectively. For the case of 1,4-dioxane, the conversion of FPF increased from 18.30% to 80.00%, while LP yield increased dramatically from 13.30% to 50.90% (consisting of 42.3% bio-oil compounds) when the reaction temperature was increased from 483 to 563 K. However, the conversion of FPF and LP yield decreased to 69.60% and 24.10%, respectively, when the temperature was further increased to 603 K. Comparison between all the solvents, subcritical 1,4-dioxane treatment was found very effective in the degradation of FPF to produce bio-oil component.
    Matched MeSH terms: Biotechnology/methods*
  9. Kee CY, Hassan M, Ramachandran KB
    PMID: 10595438
    The objective of this research was to study the kinetics of synthesis of a commercially important ester - Isopropyl Palmitate (IPP) using immobilized lipase (Lipozyme IM). It was studied in a packed bed differential reactor. In order to establish the kinetics of the reaction, parameters such as linear velocity of the fluid through the reactor, particle size, substrate concentration, substrate molar ratio, temperature and water activity were studied. Operational and storage stability of the enzyme were also assessed. The reaction followed Michaelis-Menton kinetics as observed from the relationship of initial rate of the reaction as a function of substrate concentration. It was found that the optimum substrate concentration was 0.15M palmitic acid and isopropyl alcohol in 1:1 stoichiometric ratio. Inhibition by excess of isopropyl alcohol has been identified. The optimum temperature for the esterification reaction was found to be around 50 degrees C. The activation energy of this process was determined to be 43.67 kJ/mol. The optimum water content was 0.50%. The reaction rates were measured in the absence of any significant external diffusional limitations. Since internal diffusional limitations could not be eliminated, the kinetics observed is only apparent.
    Matched MeSH terms: Biotechnology/methods
  10. Musa Mohd. Nordin
    MyJurnal
    Heralded by the revelation of the double helical structure of the DNA molecule in 1953, the 21st century is aptly designated the biotechnology century. The 20th century of physics, which saw the transformation of silicon into computing magic, was embraced with enthusiasm by virtually every household. However, unlike her predecessor, the same cannot be said about the advancements in biomedicine.
    Matched MeSH terms: Biotechnology
  11. Wong YP, Saw HY, Janaun J, Krishnaiah K, Prabhakar A
    Appl Biochem Biotechnol, 2011 May;164(2):170-82.
    PMID: 21080102 DOI: 10.1007/s12010-010-9124-8
    Solid-state fermentation (SSF) was employed to enhance the nutritive values of palm kernel cake (PKC) for poultry feeding. Aspergillus flavus was isolated from local PKC and utilized to increase the mannose content of PKC via the degradation of β-mannan in PKC; evaluation was done for batch SSF in Erlenmeyer flasks and in a novel laterally aerated moving bed (LAMB) bioreactor. The optimum condition for batch SSF in flasks was 110% initial moisture content, initial pH 6.0, 30 °C, 855 μm particle size, and 120 h of fermentation, yielding 90.91 mg mannose g⁻¹ dry PKC (5.9-fold increase). Batch SSF in the LAMB at the optimum condition yielded 79.61 mg mannose g⁻¹ dry PKC (5.5-fold increase) within just 96 h due to better heat and mass transfer when humidified air flowed radially across the PKC bed. In spite of a compromise of 12% reduction in mannose content when compared with the flasks, the LAMB facilitated good heat and mass transfer, and improved the mannose content of PKC in a shorter fermentation period. These attributes are useful for batch production of fermented PKC feed in an industrial scale.
    Matched MeSH terms: Biotechnology/instrumentation*; Biotechnology/methods*
  12. Simon I. Okekpa, Rabiatul Basria S.M.N. Mydin, Munirah Mohd Nor, Emmanuel Jairaj Moses
    MyJurnal
    Gene manipulation tools have transformed biomedical research and improved the possibilities of their uses for therapeutic purposes. These tools have aided effective genomic modification in many organisms and have been successfully applied in biomedical engineering, biotechnology and biomedicine. They also shown a potential for therapeutic applications to alleviate genetic and non-genetic diseases. Small interfering RNA (siRNA) and clustered regularly inter-spaced short-palindromic repeat/associated-protein system (CRISPR/Cas) are two of the tools applied in genetic manipulation. This review aims to evaluate the molecular influence of siRNA and CRISPR/Cas as novel tools for genetic manipulations. This review discusses the molecular mechanism of siRNA and CRISPR/Cas, and the advantages and disadvantages of siRNA and CRISPR/Cas. This review also presents comparison between siRNA and CRISPR/Cas as potential tools for gene therapy. siRNA therapeutic applications occur through protein knockout with- out causing damage to cells. siRNA knocks down gene expression at the mRNA level, whereas CRISPR/Cas knocks out gene permanently at the DNA level. Inconclusion, gene manipulation tools have potential for applications that improve therapeutic strategies and plant-derived products, but ethical standards must be established before the clin- ical application of gene editing.

    Matched MeSH terms: Biotechnology
  13. Abu Bakar UK, Pillai V, Hashim M, Daud HM
    Food Nutr Bull, 2005 Dec;26(4):432-5.
    PMID: 16465992
    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.
    Matched MeSH terms: Biotechnology
  14. Tan HT, Lee KT, Mohamed AR
    Bioresour Technol, 2010 Jul;101(14):5719-27.
    PMID: 20223656 DOI: 10.1016/j.biortech.2010.02.023
    Recently, second-generation bio-ethanol (SGB), which utilizes readily available lignocellulosic biomass has received much interest as another potential source of liquid biofuel comparable to biodiesel. Thus the aim of this paper is to determine the exergy efficiency and to compare the effectiveness of SGB and palm methyl ester (PME) processes. It was found that the production of bio-ethanol is more thermodynamically sustainable than that of biodiesel as the net exergy value (NExV) of SGB is 10% higher than that of PME. Contrarily, the former has a net energy value (NEV) which is 9% lower than the latter. Despite this, SGB is still strongly recommended as a potential biofuel because SGB production can help mitigate several detrimental impacts on the environment.
    Matched MeSH terms: Biotechnology/methods
  15. Ragab TIM, Malek RA, Elsehemy IA, Farag MMS, Salama BM, Abd El-Baseer MA, et al.
    J Biosci Bioeng, 2019 Jun;127(6):655-662.
    PMID: 30795878 DOI: 10.1016/j.jbiosc.2018.09.008
    This study focused on kinetics of levan yield by Bacillus subtilis M, in a 150 L stirred tank bioreactor under controlled pH conditions. The optimized production medium was composed of (g/L): commercial sucrose 100.0, yeast extract 2.0, K2HPO4 3.0 and MgSO4⋅7H2O 0.2; an increase in both carbohydrates consumption and cell growth depended on increasing the size of the stirred tank bioreactor from 16 L to 150 L. The highest levansucrase production (63.4 U/mL) and levan yield of 47 g/L was obtained after 24 h. Also, the specific levan yield (Yp/x) which reflects the cell productivity increased with the size increase of the stirred tank bioreactor and reached its maximum value of about 29.4 g/g cells. These results suggested that B. subtilis M could play an important role in levan yield on a large scale in the future. Chemical modifications of B. subtilis M crude levan (CL) into sulfated (SL), phosphorylated (PL), and carboxymethylated levans (CML) were done. The difference in CL structure and its derivatives was detected by FT-IR transmission spectrum. The cytotoxicity of CL and its derivatives were evaluated by HepGII, Mcf-7 and CaCo-2. In general most tested levans forms had no significant cytotoxicity effect. In fact, the carboxymethylated and phosphrylated forms had a lower anti-cancer effect than CL. On the other hand, SL had the highest cytotoxicity showing SL had a significant anti-cancer effect. The results of cytotoxicity and cell viability were statistically analyzed using three-way ANOVA.
    Matched MeSH terms: Biotechnology
  16. Rabea S, Alanazi FK, Ashour AE, Salem-Bekhit MM, Yassin AS, Moneib NA, et al.
    Saudi Pharm J, 2020 Oct;28(10):1253-1262.
    PMID: 33132719 DOI: 10.1016/j.jsps.2020.08.016
    Cell- based targeted delivery is recently gain attention as a promising platform for delivery of anticancer drug in selective and efficient manner. As a new biotechnology platform, bacterial ghosts (BGs) have novel biomedical application as targeted drug delivery system (TDDS). In the current work, Salmonellas' BGs was utilized for the first time as hepatocellular cancer (HCC) in-vitro targeted delivery system. Successful BGs loading and accurate analysis of doxorubicin (DOX) were necessary steps for testing the applicability of DOX loaded BGs in targeting the liver cancer cells. Loading capacity was maximized to reach 27.5 µg/mg (27.5% encapsulation efficiency), by incubation of 10 mg BGs with 1 mg DOX at pH 9 in constant temperature (25 °C) for 10 min. In-vitro release study of DOX loaded BGs showed a sustained release (182 h) obeying Higuchi sustained kinetic release model. The death rate (tested by MTT assay) of HepG2 reached to 64.5% by using of 4 μg/ml, while it was about 51% using the same concentration of the free DOX (P value 
    Matched MeSH terms: Biotechnology
  17. Abd-Aziz S
    J Biosci Bioeng, 2002;94(6):526-9.
    PMID: 16233345
    The importance and development of industrial biotechnology processing has led to the utilisation of microbial enzymes in various applications. One of the important enzymes is amylase, which hydrolyses starch to glucose. In Malaysia, the use of sago starch has been increasing, and it is presently being used for the production of glucose. Sago starch represents an alternative cheap carbon source for fermentation processes that is attractive out of both economic and geographical considerations. Production of fermentable sugars from the hydrolysis of starches is normally carried out by an enzymatic processes that involves two reaction steps, liquefaction and saccharification, each of which has different temperature and pH optima with respect to the maximum reaction rate. This method of starch hydrolysis requires the use of an expensive temperature control system and a complex mixing device. Our laboratory has investigated the possibility of using amylolytic enzyme-producing microorganisms in the continuous single-step biological hydrolysis of sago flour for the production of a generic fermentation medium. The ability of a novel DNA-recombinated yeast, Saccharomyces cerevisiae strain YKU 107 (expressing alpha-amylase production) to hydrolyse gelatinised sago starch production has been studied with the aim of further utilizing sago starch to obtain value-added products.
    Matched MeSH terms: Biotechnology
  18. Ahmad Kushairi
    MyJurnal
    Quality of planting materials determines future successes of plantations and subsequent endeavours in the life cycle. Oil palm (Elaeis guineensis) breeding triggered an industry in Malaysia through “Plant Introduction” with the establishment of the first oil palm plantation. At the wake of the oil palm industry, plantations utilised the dura planting material. The hallmark discovery of the single gene inheritance for shell thickness led to the prolific dura x pisifera (DxP) derived tenera planting material. Subsequent parental inbred lines developed in recurrent selections, crossed and progeny tested exploiting heterosis had boosted yields. Further improvements were foresighted and executed in the widening of the genetic pool and collections of germplasm in centres of origin/diversity in Africa and Latin America. Field Genebank of the Malaysian Palm Oil Board (MPOB) forms the world’s largest ex situ oil palm conservation programme. This programme enabled the developments of elite breeding populations harbouring specialty oils and products. Meanwhile, opening of large oil palm areas by the Federal Land Development Authority (Felda) set the momentum in rapid expansion of the industry. Felda is an exemplary in wealth creation and quality of life (QOL). Resettlements of landless farmers into Felda schemes, employing modern farming, mainly in oil palm has helped eradicate poverty and uplifting QOL among settlers, employees and their families. Impacts of the success in wealth creation and its distribution leading to better QOL, rooted from breeding through the supply of quality planting materials. Phenotypic expressions of the planting materials were realised through genotypic and environment interactions; the former through breeding, the latter through agronomic practices. Efforts in oil palm breeding helped paved the way to a mammoth industry, contributing to the nation economic growths, impacting livelihood of the people. Further progress in yield is expected from clones, where breeding has a role in the supply of quality ortets. Genetic potential of planting materials can be further exploited through interdisciplinary approach in breeding, biotechnology and genomics. With continuing wealth creation, the oil palm saga continues. Once wealth is created, QOL will follow.
    Matched MeSH terms: Biotechnology
  19. Asshifa Md Noh N, Al-Ashraf Abdullah A, Nasir Mohamad Ibrahim M, Ramli Mohd Yahya A
    J Gen Appl Microbiol, 2012;58(2):153-61.
    PMID: 22688247
    A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.
    Matched MeSH terms: Biotechnology/methods*
  20. Mondal PP, Galodha A, Verma VK, Singh V, Show PL, Awasthi MK, et al.
    Bioresour Technol, 2023 Feb;370:128523.
    PMID: 36565820 DOI: 10.1016/j.biortech.2022.128523
    Machine Learning is quickly becoming an impending game changer for transforming big data thrust from the bioprocessing industry into actionable output. However, the complex data set from bioprocess, lagging cyber-integrated sensor system, and issues with storage scalability limit machine learning real-time application. Hence, it is imperative to know the state of technology to address prevailing issues. This review first gives an insight into the basic understanding of the machine learning domain and discusses its complexities for more comprehensive applications. Followed by an outline of how relevant machine learning models are for statistical and logical analysis of the enormous datasets generated to control bioprocess operations. Then this review critically discusses the current knowledge, its limitations, and future aspects in different subfields of the bioprocessing industry. Further, this review discusses the prospects of adopting a hybrid method to dovetail different modeling strategies, cyber-networking, and integrated sensors to develop new digital biotechnologies.
    Matched MeSH terms: Biotechnology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links