Displaying publications 21 - 40 of 44 in total

Abstract:
Sort:
  1. Syed Nasser N, Ibrahim B, Sharifat H, Abdul Rashid A, Suppiah S
    J Clin Neurosci, 2019 Jul;65:87-99.
    PMID: 30955950 DOI: 10.1016/j.jocn.2019.03.054
    Functional magnetic resonance imaging (fMRI) is a non-invasive imaging modality that enables the assessment of neural connectivity and oxygen utility of the brain using blood oxygen level dependent (BOLD) imaging sequence. Electroencephalography (EEG), on the other hands, looks at cortical electrical impulses of the brain thus detecting brainwave patterns during rest and thought processing. The combination of these two modalities is called fMRI with simultaneous EEG (fMRI-EEG), which has emerged as a new tool for experimental neuroscience assessments and has been applied clinically in many settings, most commonly in epilepsy cases. Recent advances in imaging has led to fMRI-EEG being utilized in behavioural studies which can help in giving an objective assessment of ambiguous cases and help in the assessment of response to treatment by providing a non-invasive biomarker of the disease processes. We aim to review the role and interpretation of fMRI-EEG in studies pertaining to psychiatric disorders and behavioral abnormalities.
    Matched MeSH terms: Brain Mapping/methods
  2. Zafar R, Kamel N, Naufal M, Malik AS, Dass SC, Ahmad RF, et al.
    Australas Phys Eng Sci Med, 2018 Sep;41(3):633-645.
    PMID: 29948968 DOI: 10.1007/s13246-018-0656-5
    Neuroscientists have investigated the functionality of the brain in detail and achieved remarkable results but this area still need further research. Functional magnetic resonance imaging (fMRI) is considered as the most reliable and accurate technique to decode the human brain activity, on the other hand electroencephalography (EEG) is a portable and low cost solution in brain research. The purpose of this study is to find whether EEG can be used to decode the brain activity patterns like fMRI. In fMRI, data from a very specific brain region is enough to decode the brain activity patterns due to the quality of data. On the other hand, EEG can measure the rapid changes in neuronal activity patterns due to its higher temporal resolution i.e., in msec. These rapid changes mostly occur in different brain regions. In this study, multivariate pattern analysis (MVPA) is used both for EEG and fMRI data analysis and the information is extracted from distributed activation patterns of the brain. The significant information among different classes is extracted using two sample t test in both data sets. Finally, the classification analysis is done using the support vector machine. A fair comparison of both data sets is done using the same analysis techniques, moreover simultaneously collected data of EEG and fMRI is used for this comparison. The final analysis is done with the data of eight participants; the average result of all conditions are found which is 65.7% for EEG data set and 64.1% for fMRI data set. It concludes that EEG is capable of doing brain decoding with the data from multiple brain regions. In other words, decoding accuracy with EEG MVPA is as good as fMRI MVPA and is above chance level.
    Matched MeSH terms: Brain Mapping*
  3. Othman E, Yusoff AN, Mohamad M, Abdul Manan H, Abd Hamid AI, Giampietro V
    Exp Brain Res, 2020 Apr;238(4):945-956.
    PMID: 32179941 DOI: 10.1007/s00221-020-05765-3
    The present study examined the impact of white noise on word recall performance and brain activity in 40 healthy adolescents, split in two groups (normal and low) depending on their auditory working memory capacity (AWMC). Using functional magnetic resonance imaging, participants performed a backward recall task under four different signal-to-noise ratio (SNR) conditions: 15, 10, 5, and 0-dB SNR. Behaviorally, normal AWMC individuals scored significantly higher than low AWMC individuals across noise levels. Whole-brain analyses showed brain activation not to be statistically different between groups across noise levels. In the normal group, a significant positive relationship was found between performance and number of activated voxels in the right superior frontal gyrus. In the low group, significant positive correlations were found between performance and number of activated voxels in left superior frontal gyrus, left inferior frontal gyrus, and left anterior cingulate cortex. These findings suggest that the strategic structure involved in the enhancement of AWM performance may differ in normal and low AWMC individuals.
    Matched MeSH terms: Brain Mapping*
  4. Jatoi MA, Kamel N, Musavi SHA, López JD
    Curr Med Imaging Rev, 2019;15(2):184-193.
    PMID: 31975664 DOI: 10.2174/1573405613666170629112918
    BACKGROUND: Electrical signals are generated inside human brain due to any mental or physical task. This causes activation of several sources inside brain which are localized using various optimization algorithms.

    METHODS: Such activity is recorded through various neuroimaging techniques like fMRI, EEG, MEG etc. EEG signals based localization is termed as EEG source localization. The source localization problem is defined by two complementary problems; the forward problem and the inverse problem. The forward problem involves the modeling how the electromagnetic sources cause measurement in sensor space, while the inverse problem refers to the estimation of the sources (causes) from observed data (consequences). Usually, this inverse problem is ill-posed. In other words, there are many solutions to the inverse problem that explains the same data. This ill-posed problem can be finessed by using prior information within a Bayesian framework. This research work discusses source reconstruction for EEG data using a Bayesian framework. In particular, MSP, LORETA and MNE are compared.

    RESULTS: The results are compared in terms of variational free energy approximation to model evidence and in terms of variance accounted for in the sensor space. The results are taken for real time EEG data and synthetically generated EEG data at an SNR level of 10dB.

    CONCLUSION: In brief, it was seen that MSP has the highest evidence and lowest localization error when compared to classical models. Furthermore, the plausibility and consistency of the source reconstruction speaks to the ability of MSP technique to localize active brain sources.

    Matched MeSH terms: Brain Mapping/methods
  5. Ramli N, Rahmat K, Lim KS, Tan CT
    Eur J Radiol, 2015 Sep;84(9):1791-800.
    PMID: 26187861 DOI: 10.1016/j.ejrad.2015.03.024
    Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed.
    Matched MeSH terms: Brain Mapping/methods*
  6. Mohd Rashid MH, Ab Rani NS, Kannan M, Abdullah MW, Ab Ghani MA, Kamel N, et al.
    PeerJ, 2024;12:e17721.
    PMID: 39040935 DOI: 10.7717/peerj.17721
    A large body of research establishes the efficacy of musical intervention in many aspects of physical, cognitive, communication, social, and emotional rehabilitation. However, the underlying neural mechanisms for musical therapy remain elusive. This study aimed to investigate the potential neural correlates of musical therapy, focusing on the changes in the topology of emotion brain network. To this end, a Bayesian statistical approach and a cross-over experimental design were employed together with two resting-state magnetoencephalography (MEG) as controls. MEG recordings of 30 healthy subjects were acquired while listening to five auditory stimuli in random order. Two resting-state MEG recordings of each subject were obtained, one prior to the first stimulus (pre) and one after the final stimulus (post). Time series at the level of brain regions were estimated using depth-weighted minimum norm estimation (wMNE) source reconstruction method and the functional connectivity between these regions were computed. The resultant connectivity matrices were used to derive two topological network measures: transitivity and global efficiency which are important in gauging the functional segregation and integration of brain network respectively. The differences in these measures between pre- and post-stimuli resting MEG were set as the equivalence regions. We found that the network measures under all auditory stimuli were equivalent to the resting state network measures in all frequency bands, indicating that the topology of the functional brain network associated with emotional regulation in healthy subjects remains unchanged following these auditory stimuli. This suggests that changes in the emotion network topology may not be the underlying neural mechanism of musical therapy. Nonetheless, further studies are required to explore the neural mechanisms of musical interventions especially in the populations with neuropsychiatric disorders.
    Matched MeSH terms: Brain Mapping/methods
  7. Lee OW, Mao D, Wunderlich J, Balasubramanian G, Haneman M, Korneev M, et al.
    Trends Hear, 2024;28:23312165241258056.
    PMID: 39053892 DOI: 10.1177/23312165241258056
    This study investigated the morphology of the functional near-infrared spectroscopy (fNIRS) response to speech sounds measured from 16 sleeping infants and how it changes with repeated stimulus presentation. We observed a positive peak followed by a wide negative trough, with the latter being most evident in early epochs. We argue that the overall response morphology captures the effects of two simultaneous, but independent, response mechanisms that are both activated at the stimulus onset: one being the obligatory response to a sound stimulus by the auditory system, and the other being a neural suppression effect induced by the arousal system. Because the two effects behave differently with repeated epochs, it is possible to mathematically separate them and use fNIRS to study factors that affect the development and activation of the arousal system in infants. The results also imply that standard fNIRS analysis techniques need to be adjusted to take into account the possibilities of multiple simultaneous brain systems being activated and that the response to a stimulus is not necessarily stationary.
    Matched MeSH terms: Brain Mapping/methods
  8. Adeshina AM, Hashim R
    Interdiscip Sci, 2016 Mar;8(1):53-64.
    PMID: 26260066 DOI: 10.1007/s12539-015-0274-9
    Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using compute unified device architecture, extending the previously proposed SurLens Visualization and computer aided hepatocellular carcinoma frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, USA. Significantly, our proposed framework is able to generate and extract points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the nodes and the edges. The framework is very efficient in providing greater interactivity as a way of representing the nodes and the edges intuitively, all achieved at a considerably interactive speed for instantaneous mapping of the datasets' features. Uniquely, the connectomic algorithm performed remarkably fast with normal hardware requirement specifications.
    Matched MeSH terms: Brain Mapping
  9. Elaina NS, Malik AS, Shams WK, Badruddin N, Abdullah JM, Reza MF
    Clin Neuroradiol, 2018 Jun;28(2):267-281.
    PMID: 28116447 DOI: 10.1007/s00062-017-0557-0
    PURPOSE: To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches.

    MATERIAL AND METHODS: Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests.

    RESULTS: The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches.

    CONCLUSION: Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.

    Matched MeSH terms: Brain Mapping
  10. Shekh Ibrahim SA, Hamzah N, Abdul Wahab AR, Abdullah JM, Nurul Hashimah Ahamed Hassain Malim, Sumari P, et al.
    Malays J Med Sci, 2020 Jul;27(4):1-8.
    PMID: 32863741 DOI: 10.21315/mjms2020.27.4.1
    Universiti Sains Malaysia has started the Big Brain Data Initiative project since the last two years as brain mapping techniques have proven to be important in understanding the molecular, cellular and functional mechanisms of the brain. This Big Brain Data Initiative can be a platform for neurophysicians and neurosurgeons, psychiatrists, psychologists, cognitive neuroscientists, neurotechnologists and other researchers to improve brain mapping techniques. Data collection from a cohort of multiracial population in Malaysia is important for present and future research and finding cure for neurological and mental illness. Malaysia is one of the participant of the Global Brain Consortium (GBC) supported by the World Health Organization. This project is a part of its contribution via the third GBC goal which is influencing the policy process within and between high-income countries and low- and middle-income countries, such as pathways for fair data-sharing of multi-modal imaging data, starting with electroencephalographic data.
    Matched MeSH terms: Brain Mapping
  11. Jatoi MA, Kamel N, Malik AS, Faye I
    Australas Phys Eng Sci Med, 2014 Dec;37(4):713-21.
    PMID: 25359588 DOI: 10.1007/s13246-014-0308-3
    Human brain generates electromagnetic signals during certain activation inside the brain. The localization of the active sources which are responsible for such activation is termed as brain source localization. This process of source estimation with the help of EEG which is also known as EEG inverse problem is helpful to understand physiological, pathological, mental, functional abnormalities and cognitive behaviour of the brain. This understanding leads for the specification for diagnoses of various brain disorders such as epilepsy and tumour. Different approaches are devised to exactly localize the active sources with minimum localization error, less complexity and more validation which include minimum norm, low resolution brain electromagnetic tomography (LORETA), standardized LORETA, exact LORETA, Multiple Signal classifier, focal under determined system solution etc. This paper discusses and compares the ability of localizing the sources for two low resolution methods i.e., sLORETA and eLORETA respectively. The ERP data with visual stimulus is used for comparison at four different time instants for both methods (sLORETA and eLORETA) and then corresponding activation in terms of scalp map, slice view and cortex map is discussed.
    Matched MeSH terms: Brain Mapping/methods*
  12. Nair SR, Tan LK, Mohd Ramli N, Lim SY, Rahmat K, Mohd Nor H
    Eur Radiol, 2013 Jun;23(6):1459-66.
    PMID: 23300042 DOI: 10.1007/s00330-012-2759-9
    OBJECTIVE: To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD).

    METHODS: 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3.

    RESULTS: Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified.

    CONCLUSION: Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD.

    KEY POINTS: • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

    Matched MeSH terms: Brain Mapping/methods
  13. Habib MA, Ibrahim F, Mohktar MS, Kamaruzzaman SB, Rahmat K, Lim KS
    World Neurosurg, 2016 Apr;88:576-585.
    PMID: 26548833 DOI: 10.1016/j.wneu.2015.10.096
    BACKGROUND: Electroencephalography source imaging (ESI) is a promising tool for localizing the cortical sources of both ictal and interictal epileptic activities. Many studies have shown the clinical usefulness of interictal ESI, but very few have investigated the utility of ictal ESI. The aim of this article is to examine the clinical usefulness of ictal ESI for epileptic focus localization in patients with refractory focal epilepsy, especially extratemporal lobe epilepsy.

    METHODS: Both ictal and interictal ESI were performed by the use of patient-specific realistic forward models and 3 different linear distributed inverse models. Lateralization as well as concordance between ESI-estimated focuses and single-photon emission computed tomography (SPECT) focuses were assessed.

    RESULTS: All the ESI focuses (both ictal and interictal) were found lateralized to the same hemisphere as ictal SPECT focuses. Lateralization results also were in agreement with the lesion sides as visualized on magnetic resonance imaging. Ictal ESI results, obtained from the best-performing inverse model, were fully concordant with the same cortical lobe as SPECT focuses, whereas the corresponding concordance rate is 87.50% in case of interictal ESI.

    CONCLUSIONS: Our findings show that ictal ESI gives fully lateralized and highly concordant results with ictal SPECT and may provide a cost-effective substitute for ictal SPECT.

    Matched MeSH terms: Brain Mapping/methods*
  14. Palaniappan R, Paramesran R, Nishida S, Saiwaki N
    IEEE Trans Neural Syst Rehabil Eng, 2002 Sep;10(3):140-8.
    PMID: 12503778
    This paper proposes a new brain-computer interface (BCI) design using fuzzy ARTMAP (FA) neural network, as well as an application of the design. The objective of this BCI-FA design is to classify the best three of the five available mental tasks for each subject using power spectral density (PSD) values of electroencephalogram (EEG) signals. These PSD values are extracted using the Wiener-Khinchine and autoregressive methods. Ten experiments employing different triplets of mental tasks are studied for each subject. The findings show that the average BCI-FA outputs for four subjects gave less than 6% of error using the best triplets of mental tasks identified from the classification performances of FA. This implies that the BCI-FA can be successfully used with a tri-state switching device. As an application, a proposed tri-state Morse code scheme could be utilized to translate the outputs of this BCI-FA design into English letters. In this scheme, the three BCI-FA outputs correspond to a dot and a dash, which are the two basic Morse code alphabets and a space to denote the end (or beginning) of a dot or a dash. The construction of English letters using this tri-state Morse code scheme is determined only by the sequence of mental tasks and is independent of the time duration of each mental task. This is especially useful for constructing letters that are represented as multiple dots or dashes. This combination of BCI-FA design and the tri-state Morse code scheme could be developed as a communication system for paralyzed patients.
    Matched MeSH terms: Brain Mapping/methods*
  15. Ramli N, Lim CH, Rajagopal R, Tan LK, Seow P, Ariffin H
    Pediatr Radiol, 2020 08;50(9):1277-1283.
    PMID: 32591982 DOI: 10.1007/s00247-020-04717-x
    BACKGROUND: Intrathecal and intravenous chemotherapy, specifically methotrexate, might contribute to neural microstructural damage.

    OBJECTIVE: To assess, by diffusion tensor imaging, microstructural integrity of white matter in paediatric patients with acute lymphoblastic leukaemia (ALL) following intrathecal and intravenous chemotherapy.

    MATERIALS AND METHODS: Eleven children diagnosed with de novo ALL underwent MRI scans of the brain with diffusion tensor imaging (DTI) prior to commencement of chemotherapy and at 12 months after diagnosis, using a 3-tesla (T) MRI scanner. We investigated the changes in DTI parameters in white matter tracts before and after chemotherapy using tract-based spatial statistics overlaid on the International Consortium of Brain Mapping DTI-81 atlas. All of the children underwent formal neurodevelopmental assessment at the two study time points.

    RESULTS: Whole-brain DTI analysis showed significant changes between the two time points, affecting several white matter tracts. The tracts demonstrated longitudinal changes of decreasing mean and radial diffusivity. The neurodevelopment of the children was near compatible for age at the end of ALL treatment.

    CONCLUSION: The quantification of white matter tracts changes in children undergoing chemotherapy showed improving longitudinal values in DTI metrics (stable fractional anisotropy, decreasing mean and radial diffusivity), which are incompatible with deterioration of microstructural integrity in these children.

    Matched MeSH terms: Brain Mapping/methods
  16. Salih QA, Ramli AR, Mahmud R, Wirza R
    MedGenMed, 2005;7(2):1.
    PMID: 16369380
    Different approaches to gray and white matter measurements in magnetic resonance imaging (MRI) have been studied. For clinical use, the estimated values must be reliable and accurate when, unfortunately, many techniques fail on these criteria in an unrestricted clinical environment. A recent method for tissue clusterization in MRI analysis has the advantage of great simplicity, and it takes the account of partial volume effects. In this study, we will evaluate the intensity of MR sequences known as T1-weighted images in an axial sliced section. Intensity group clustering algorithms are proposed to achieve further diagnosis for brain MRI, which has been hardly studied. Subjective study has been suggested to evaluate the clustering group intensity in order to obtain the best diagnosis as well as better detection for the suspected cases. This technique makes use of image tissue biases of intensity value pixels to provide 2 regions of interest as techniques. Moreover, the original mathematic solution could still be used with a specific set of modern sequences. There are many advantages to generalize the solution, which give far more scope for application and greater accuracy.
    Matched MeSH terms: Brain Mapping/methods*
  17. Yousefi B, Loo CK
    ScientificWorldJournal, 2014;2014:723213.
    PMID: 25276860 DOI: 10.1155/2014/723213
    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility.
    Matched MeSH terms: Brain Mapping
  18. Yick YY, Buratto LG, Schaefer A
    Neuroreport, 2016 08 03;27(11):864-8.
    PMID: 27295027 DOI: 10.1097/WNR.0000000000000628
    Here, we report evidence that electrophysiological neural activity preceding the onset of emotional pictures can predict whether they will be remembered or forgotten 24 h later, whereas the same effect was not observed for neutral pictures. In contrast to previous research, we observed this effect using a paradigm in which participants could not predict the emotional or the neutral content of the pictures before their onset. These effects were obtained alongside significant behavioural effects of superior recognition memory for emotional compared with neutral items. These findings suggest that the preferential encoding of emotional events in memory is determined by fluctuations in the availability of processing resources just before event onset. This explanation argues in favour of mediational models of emotional memory, which contend that emotional information is preferentially encoded because it mobilizes a greater amount of processing resources than neutral information.
    Matched MeSH terms: Brain Mapping
  19. Babu MGR, Kadavigere R, Koteshwara P, Sathian B, Rai KS
    Sci Rep, 2020 09 30;10(1):16177.
    PMID: 32999361 DOI: 10.1038/s41598-020-73221-x
    Studies provide evidence that practicing meditation enhances neural plasticity in reward processing areas of brain. No studies till date, provide evidence of such changes in Rajyoga meditation (RM) practitioners. The present study aimed to identify grey matter volume (GMV) changes in reward processing areas of brain and its association with happiness scores in RM practitioners compared to non-meditators. Structural MRI of selected participants matched for age, gender and handedness (n = 40/group) were analyzed using voxel-based morphometric method and Oxford Happiness Questionnaire (OHQ) scores were correlated. Significant increase in OHQ happiness scores were observed in RM practitioners compared to non-meditators. Whereas, a trend towards significance was observed in more experienced RM practitioners, on correlating OHQ scores with hours of meditation experience. Additionally, in RM practitioners, higher GMV were observed in reward processing centers-right superior frontal gyrus, left inferior orbitofrontal cortex (OFC) and bilateral precuneus. Multiple regression analysis showed significant association between OHQ scores of RM practitioners and reward processing regions right superior frontal gyrus, left middle OFC, right insula and left anterior cingulate cortex. Further, with increasing hours of RM practice, a significant positive association was observed in bilateral ventral pallidum. These findings indicate that RM practice enhances GMV in reward processing regions associated with happiness.
    Matched MeSH terms: Brain Mapping
  20. Petit O, Merunka D, Anton JL, Nazarian B, Spence C, Cheok AD, et al.
    PLoS One, 2016;11(7):e0156333.
    PMID: 27428267 DOI: 10.1371/journal.pone.0156333
    Taking into account how people value the healthiness and tastiness of food at both the behavioral and brain levels may help to better understand and address overweight and obesity-related issues. Here, we investigate whether brain activity in those areas involved in self-control may increase significantly when individuals with a high body-mass index (BMI) focus their attention on the taste rather than on the health benefits related to healthy food choices. Under such conditions, BMI is positively correlated with both the neural responses to healthy food choices in those brain areas associated with gustation (insula), reward value (orbitofrontal cortex), and self-control (inferior frontal gyrus), and with the percent of healthy food choices. By contrast, when attention is directed towards health benefits, BMI is negatively correlated with neural activity in gustatory and reward-related brain areas (insula, inferior frontal operculum). Taken together, these findings suggest that those individuals with a high BMI do not necessarily have reduced capacities for self-control but that they may be facilitated by external cues that direct their attention toward the tastiness of healthy food. Thus, promoting the taste of healthy food in communication campaigns and/or food packaging may lead to more successful self-control and healthy food behaviors for consumers with a higher BMI, an issue which needs to be further researched.
    Matched MeSH terms: Brain Mapping
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links