Displaying publications 21 - 32 of 32 in total

Abstract:
Sort:
  1. Ren H, Zhou D, Lu J, Show PL, Sun FF
    Environ Sci Pollut Res Int, 2023 Jul;30(32):78030-78040.
    PMID: 37311860 DOI: 10.1007/s11356-023-27850-0
    Microalgae CO2 sequestration has gained considerable attention in the last three decades as a promising technology to slow global warming caused by CO2 emissions. To provide a comprehensive and objective analysis of the research status, hot spots, and frontiers of CO2 fixation by microalgae, a bibliometric approach was recently chosen for review. In this study, 1561 articles (1991-2022) from the Web of Science (WOS) on microalgae CO2 sequestration were screened. A knowledge map of the domain was presented using VOSviewer and CiteSpace. It visually demonstrates the most productive journals (Bioresource Technology), countries (China and USA), funding sources, and top contributors (Cheng J, Chang JS, and their team) in the field of CO2 sequestration by microalgae. The analysis also revealed that research hotspots changed over time and that recent research has focused heavily on improving carbon sequestration efficiency. Finally, commercialization of carbon fixation by microalgae is a key hurdle, and supports from other disciplines could improve carbon sequestration efficiency.
    Matched MeSH terms: Carbon Sequestration
  2. Ross FWR, Boyd PW, Filbee-Dexter K, Watanabe K, Ortega A, Krause-Jensen D, et al.
    Sci Total Environ, 2023 Aug 10;885:163699.
    PMID: 37149169 DOI: 10.1016/j.scitotenv.2023.163699
    Seaweed (macroalgae) has attracted attention globally given its potential for climate change mitigation. A topical and contentious question is: Can seaweeds' contribution to climate change mitigation be enhanced at globally meaningful scales? Here, we provide an overview of the pressing research needs surrounding the potential role of seaweed in climate change mitigation and current scientific consensus via eight key research challenges. There are four categories where seaweed has been suggested to be used for climate change mitigation: 1) protecting and restoring wild seaweed forests with potential climate change mitigation co-benefits; 2) expanding sustainable nearshore seaweed aquaculture with potential climate change mitigation co-benefits; 3) offsetting industrial CO2 emissions using seaweed products for emission abatement; and 4) sinking seaweed into the deep sea to sequester CO2. Uncertainties remain about quantification of the net impact of carbon export from seaweed restoration and seaweed farming sites on atmospheric CO2. Evidence suggests that nearshore seaweed farming contributes to carbon storage in sediments below farm sites, but how scalable is this process? Products from seaweed aquaculture, such as the livestock methane-reducing seaweed Asparagopsis or low carbon food resources show promise for climate change mitigation, yet the carbon footprint and emission abatement potential remains unquantified for most seaweed products. Similarly, purposely cultivating then sinking seaweed biomass in the open ocean raises ecological concerns and the climate change mitigation potential of this concept is poorly constrained. Improving the tracing of seaweed carbon export to ocean sinks is a critical step in seaweed carbon accounting. Despite carbon accounting uncertainties, seaweed provides many other ecosystem services that justify conservation and restoration and the uptake of seaweed aquaculture will contribute to the United Nations Sustainable Development Goals. However, we caution that verified seaweed carbon accounting and associated sustainability thresholds are needed before large-scale investment into climate change mitigation from seaweed projects.
    Matched MeSH terms: Carbon Sequestration
  3. Rozaimi M, Fairoz M, Hakimi TM, Hamdan NH, Omar R, Ali MM, et al.
    Mar Pollut Bull, 2017 Jun 30;119(2):253-260.
    PMID: 28460878 DOI: 10.1016/j.marpolbul.2017.03.073
    Seagrass meadows provide important carbon sequestration services but anthropogenic activities modify the natural ecosystem and inevitably lower carbon storage capacity. The tropical mixed-species meadows in the Sungai Pulai Estuary (Johor, Malaysia) are impacted by such activities. In this study, we provide baseline estimates for carbon stores analysed from sediment cores. In sediment depths up to 100cm, organic (OC) and inorganic carbon (IC) stores were 43-101MgCha-1 and 46-83MgCha-1, respectively, and are in the lower end of global average values. The bulk of OC (53-98%) originated from seston suggesting that the meadows had low capacity to retain seagrass-derived organic matter. The species factor resulted in some variability in OC stores but did not appear to influence IC values. The low carbon stores in the meadow may be a direct result of sediment disturbances but natural biogeochemical processes are not discounted as possible causal factors.
    Matched MeSH terms: Carbon Sequestration
  4. Sedat Kele?
    Sains Malaysiana, 2017;46:381-386.
    This study presents the optimum cutting ages in Turkish pine (Pinus brutia Ten.) plantations including timber production
    and carbon sequestration values in Turkey. Four different growing spaces are considered. The study also evaluates the
    effects of different discount rates and carbon prices on the optimum cutting ages using net present value approach. The
    growth and yield curves, biomass equations and carbon conversion factors as well as forest plantation costs and timber
    assortments revenues for Turkish pine plantations are used to determine the optimum cutting ages. The results of the
    case study showed that the integration of carbon sequestration benefits into timber production increased the optimum
    cutting ages of Turkish pine plantations for each growing spaces in order to sequester more carbon. The optimum cutting
    ages decreased depending on the increase in discount rates. When carbon prices increased the optimum cutting ages
    also increased.
    Matched MeSH terms: Carbon Sequestration
  5. Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, et al.
    Nature, 2021 Sep;597(7874):77-81.
    PMID: 34471275 DOI: 10.1038/s41586-021-03740-8
    The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
    Matched MeSH terms: Carbon Sequestration
  6. Show PL, Tang MS, Nagarajan D, Ling TC, Ooi CW, Chang JS
    Int J Mol Sci, 2017 Jan 22;18(1).
    PMID: 28117737 DOI: 10.3390/ijms18010215
    Microalgae contribute up to 60% of the oxygen content in the Earth's atmosphere by absorbing carbon dioxide and releasing oxygen during photosynthesis. Microalgae are abundantly available in the natural environment, thanks to their ability to survive and grow rapidly under harsh and inhospitable conditions. Microalgal cultivation is environmentally friendly because the microalgal biomass can be utilized for the productions of biofuels, food and feed supplements, pharmaceuticals, nutraceuticals, and cosmetics. The cultivation of microalgal also can complement approaches like carbon dioxide sequestration and bioremediation of wastewaters, thereby addressing the serious environmental concerns. This review focuses on the factors affecting microalgal cultures, techniques adapted to obtain high-density microalgal cultures in photobioreactors, and the conversion of microalgal biomass into biofuels. The applications of microalgae in carbon dioxide sequestration and phycoremediation of wastewater are also discussed.
    Matched MeSH terms: Carbon Sequestration
  7. Song C, Xiong Y, Jin P, Sun Y, Zhang Q, Ma Z, et al.
    Sci Total Environ, 2023 Oct 15;895:164986.
    PMID: 37353016 DOI: 10.1016/j.scitotenv.2023.164986
    China is responsible for the biggest shellfish and macroalgae production in the world. In this study, comprehensive methods were used to assess the CO2 release and sequestration by maricultured shellfish and macroalgae in China. Through considering CaCO3 production and CO2 release coefficient (Φ, moles of CO2 released per mole of CaCO3 formed) in different waters, we find that cultured shellfish released 0.741 ± 0.008 Tg C yr-1 through calcification based on the data of 2016-2020. In addition to calcification, maricultured shellfish released 0.580 ± 0.004 Tg C yr-1 by respiration. Meanwhile, shellfish sequestered 0.145 ± 0.001 and 0.0387 ± 0.0004 Tg C yr-1 organic carbon in sediments and shells, respectively. Therefore, the net released CO2 by maricultured shellfish was 1.136 ± 0.011 Tg C yr-1, which is about four times higher than that maricultured macroalgae could sequester (0.280 ± 0.010 Tg C yr-1). To achieve carbon neutrality within the mariculture system, shellfish culture may need to be restricted and meanwhile the expansion of macroalgae cultivation should be carried out. The mean carbon sequestration rate of seven kinds of macroalgae was 174 ± 6 g m-2 yr-1 while some cultivated macroalgae had higher CO2 sequestration rates, e.g. 356 ± 24 g C m-2 yr-1 for Gracilariopsis lemaneiformis and 331 ± 17 g C m-2 yr-1 for Undaria pinnatifida. In scenario 0.5 (CCUS (Carbon Capture, Utilization and Storage) sequesters 0.5 Gt CO2 per year), using macroalgae culture cannot achieve China's carbon neutrality by 2060 but in scenarios 1.0 and 1.5 (CCUS sequesters 1.0 and 1.5 Gt CO2 per year, respectively) it is feasible to achieve carbon neutrality using some macroalgae species with high carbon sequestration rates. This study provides important insights into how to develop mariculture in the context of carbon-neutrality and climate change mitigation.
    Matched MeSH terms: Carbon Sequestration
  8. Stankovic M, Ambo-Rappe R, Carly F, Dangan-Galon F, Fortes MD, Hossain MS, et al.
    Sci Total Environ, 2021 Aug 20;783:146858.
    PMID: 34088119 DOI: 10.1016/j.scitotenv.2021.146858
    Seagrasses have the ability to contribute towards climate change mitigation, through large organic carbon (Corg) sinks within their ecosystems. Although the importance of blue carbon within these ecosystems has been addressed in some countries of Southeast Asia, the regional and national inventories with the application of nature-based solutions are lacking. In this study, we aim to estimate national coastal blue carbon stocks in the seagrass ecosystems in the countries of Southeast Asia including the Andaman and Nicobar Islands of India. This study further assesses the potential of conservation and restoration practices and highlights the seagrass meadows as nature-based solution for climate change mitigation. The average value of the total carbon storage within seagrass meadows of this region is 121.95 ± 76.11 Mg ha-1 (average ± SD) and the total Corg stock of the seagrass meadows of this region was 429.11 ± 111.88 Tg, with the highest Corg stock in the Philippines (78%). The seagrass meadows of this region have the capacity to accumulate 5.85-6.80 Tg C year-1, which accounts for $214.6-249.4 million USD. Under the current rate of decline of 2.82%, the seagrass meadows are emitting 1.65-2.08 Tg of CO2 year-1 and the economic value of these losses accounts for $21.42-24.96 million USD. The potential of the seagrass meadows to the offset current CO2 emissions varies across the region, with the highest contribution to offset is in the seagrass meadows of the Philippines (11.71%). Current national policies and commitments of nationally determined contributions do not include blue carbon ecosystems as climate mitigation measures, even though these ecosystems can contribute up to 7.03% of the countries' reduction goal of CO2 emissions by 2030. The results of this study highlight and promote the potential of the southeast Asian seagrass meadows to national and international agencies as a practical scheme for nature-based solutions for climate change mitigation.
    Matched MeSH terms: Carbon Sequestration
  9. Too CC, Keller A, Sickel W, Lee SM, Yule CM
    Front Microbiol, 2018;9:2859.
    PMID: 30564202 DOI: 10.3389/fmicb.2018.02859
    Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.
    Matched MeSH terms: Carbon Sequestration
  10. Wang Z, Lechner AM, Yang Y, Baumgartl T, Wu J
    Sci Total Environ, 2020 May 15;717:137214.
    PMID: 32062237 DOI: 10.1016/j.scitotenv.2020.137214
    Open-cut coal mining can seriously disturb and reshape natural landscapes which results in a range of impacts on local ecosystems and the services they provide. To address the negative impacts of disturbance, progressive rehabilitation is commonly advocated. However, there is little research focusing on how these impacts affect ecosystem services within mine sites and changes over time. The aim of this study was to assess the cumulative impacts of mining disturbance and rehabilitation on ecosystem services through mapping and quantifying changes at multiple spatial and temporal scales. Four ecosystem services including carbon sequestration, air quality regulation, soil conservation and water yield were assessed in 1989, 1997, 2005 and 2013. Disturbance and rehabilitation was mapped using LandTrendr algorithm with Landsat. We mapped spatial patterns and pixel values for each ecosystem service with corresponding model and the landscape changes were analyzed with landscape metrics. In addition, we assessed synergies and trade-offs using Spearman's correlation coefficient for different landscape classes and scales. The results showed that carbon sequestration, air quality regulation and water yield services were both positively and negatively affected by vegetation cover changes due to mined land disturbance and rehabilitation, while soil conservation service were mainly influenced by topographic changes. There were strong interactions between carbon sequestration, air quality regulation and water yield, which were steady among different spatial scales and landscape types. Soil conservation correlations were weak and changed substantially due to differences of spatial scales and landscape types. Although there are limitations associated with data accessibility, this study provides a new research method for mapping impacts of mining on ecosystem services, which offer spatially explicit information for decision-makers and environmental regulators to carry out feasible policies, balancing mining development with ecosystem services provision.
    Matched MeSH terms: Carbon Sequestration
  11. Yule CM, Lim YY, Lim TY
    Carbon Balance Manag, 2018 Feb 07;13(1):3.
    PMID: 29417248 DOI: 10.1186/s13021-018-0092-6
    BACKGROUND: Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings.

    RESULTS: The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves.

    CONCLUSIONS: Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

    Matched MeSH terms: Carbon Sequestration
  12. Yusup Y, Swesi AE, Sigid MF, Almdhun HM, Jamshidi EJ
    Mar Pollut Bull, 2023 Aug;193:115106.
    PMID: 37302202 DOI: 10.1016/j.marpolbul.2023.115106
    This paper analyzes CO2 flux between the atmosphere and a tropical coastal sea using the eddy covariance technique. Coastal carbon dioxide flux studies are limited, particularly in tropical regions. Data was collected from the study site in Pulau Pinang, Malaysia, since 2015. The research found that the site is a moderate CO2 sink and experiences seasonal monsoonal changes that affect its carbon-sink or carbon-source capability. The analysis showed that the coastal sea systematically shifted from being a carbon-sink at night to a weak carbon-source during the day possibly due to cause by the synergistic influence of wind speed and seawater temperature. The CO2 flux are also influenced by small-scale, unpredictable winds, limited fetch, developing waves, and high-buoyancy conditions caused by low wind speeds and an unstable surface layer. Furthermore, it exhibited a linear relationship with wind speed. In stable conditions, the flux was influenced by wind speed and drag coefficient, while in unstable conditions, it was mostly controlled by friction velocity and atmospheric stability. These findings could improve our understanding of the critical factors that drive CO2 flux at the tropical coast.
    Matched MeSH terms: Carbon Sequestration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links