Displaying publications 21 - 40 of 84 in total

Abstract:
Sort:
  1. Ali R, Alabsi AM, Ali AM, Ideris A, Omar AR, Yusoff K, et al.
    Neurochem Res, 2011 Nov;36(11):2051-62.
    PMID: 21671106 DOI: 10.1007/s11064-011-0529-8
    Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells. In this investigation, the cytotolytic properties of NDV strain AF2240 were evaluated on brain tumor cell line, anaplastic astrocytoma (U-87MG), by using MTT assay. Cytological observations were studied using fluorescence microscopy and transmission electron microscopy to show the apoptogenic features of NDV on U-87MG. DNA laddering in agarose gel electrophoresis and terminal deoxyribonucleotide transferase-mediated dUTP-X nick end-labeling staining assay confirmed that the mode of cell death was by apoptosis. However, analysis of the cellular DNA content by flowcytometery showed that there was a loss of treated U-87MG cells in all cell cycle phases (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Early apoptosis was observed 6 h post-inoculation by annexin-V flow-cytometry method. It could be concluded that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing of time and virus titer.
    Matched MeSH terms: Cell Death/drug effects
  2. Liow KY, Chow SC
    Naunyn Schmiedebergs Arch Pharmacol, 2018 Jan;391(1):71-82.
    PMID: 29085973 DOI: 10.1007/s00210-017-1436-6
    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.
    Matched MeSH terms: Cell Death/drug effects
  3. Ismail N, Akhtar MN, Ismail M, Zareen S, Shah SA, Lajis NH, et al.
    Nat Prod Res, 2015;29(16):1571-4.
    PMID: 25471591 DOI: 10.1080/14786419.2014.985676
    The stem bark extracts of Knema laurina inhibited the hydrogen peroxide (H2O2)- and aggregated amyloid β-peptide 1-42 length (Aβ(1-42))-induced cell death in differentiated SH-SY5Y cells. Exposure of 250 μM H2O2 or 20 μM Aβ(1-42) to the cells for 24 h reduced 50% of cell viability. Pretreatment of cells with ethyl acetate extract (EAE) or n-butanol extract (BE) at 300 μg/mL and then exposure to H2O2 protected the cells against the neurotoxic effects of H2O2. Besides, methanolic extract (ME) at 1 and 10 μg/mL exerted neuroprotective effect on Aβ(1-42)-induced toxicity to the cells. These results showed that EAE, BE and ME exhibited neuroprotective activities against H2O2- and Aβ(1-42)-induced cell death. Flavonoids (3-6) and β-sitosterol glucoside (8) were isolated from the EAE. Compound 1 was isolated from hexane extract, and compounds 2 and 7 were isolated from dichloromethane extract. All these observations provide the possible evidence for contribution in the neuroprotective effects.
    Matched MeSH terms: Cell Death/drug effects
  4. Kar Wei L, Zamakshshari NH, Ee GCL, Mah SH, Mohd Nor SM
    Nat Prod Res, 2018 Sep;32(18):2147-2151.
    PMID: 28826239 DOI: 10.1080/14786419.2017.1367781
    Two naturally occurring xanthones, ananixanthone (1) and β-mangostin (2), were isolated using column chromatographic method from the n-hexane and methanol extracts of Calophyllum teysmannii, respectively. The major constituent, ananixanthone (1), was subjected to structural modifications via acetylation, methylation and benzylation yielding four new xanthone derivatives, ananixanthone monoacetate (3), ananixanthone diacetate (4), 5-methoxyananixanthone (5) and 5-O-benzylananixanthone (6). Compound 1 together with its four new derivatives were subjected to MTT assay against three cancer cell lines; SNU-1, K562 and LS174T. The results indicated that the parent compound has greater cytotoxicity capabilities against SNU-1 and K562 cell lines with IC50 values of 8.97 ± 0.11 and 2.96 ± 0.06 μg/mL, respectively. Compound 5 on the other hand exhibited better cytotoxicity against LS174T cell line with an IC50 value of 5.76 ± 1.07 μg/mL.
    Matched MeSH terms: Cell Death/drug effects
  5. Hajjouli S, Chateauvieux S, Teiten MH, Orlikova B, Schumacher M, Dicato M, et al.
    Molecules, 2014 Sep 16;19(9):14649-66.
    PMID: 25230121 DOI: 10.3390/molecules190914649
    Eurycomanone and eurycomanol are two quassinoids from the roots of Eurycoma longifolia Jack. The aim of this study was to assess the bioactivity of these compounds in Jurkat and K562 human leukemia cell models compared to peripheral blood mononuclear cells from healthy donors. Both eurycomanone and eurycomanol inhibited Jurkat and K562 cell viability and proliferation without affecting healthy cells. Interestingly, eurycomanone inhibited NF-κB signaling through inhibition of IκBα phosphorylation and upstream mitogen activated protein kinase (MAPK) signaling, but not eurycomanol. In conclusion, both quassinoids present differential toxicity towards leukemia cells, and the presence of the α,β-unsaturated ketone in eurycomanone could be prerequisite for the NF-κB inhibition.
    Matched MeSH terms: Cell Death/drug effects
  6. Teh SS, Ee GC, Mah SH, Lim YM, Ahmad Z
    Molecules, 2013 Feb 04;18(2):1985-94.
    PMID: 23381024 DOI: 10.3390/molecules18021985
    The cytotoxic structure-activity relationships among a series of xanthone derivatives from Mesua beccariana, Mesua ferrea and Mesua congestiflora were studied. Eleven xanthone derivatives identified as mesuarianone (1), mesuasinone (2), mesuaferrin A (3), mesuaferrin B (4), mesuaferrin C (5), 6-deoxyjacareubin (6), caloxanthone C (7), macluraxanthone (8), 1,5-dihydroxyxanthone (9), tovopyrifolin C (10) and α-mangostin (11) were isolated from the three Mesua species. The human cancer cell lines tested were Raji, SNU-1, K562, LS-174T, SK-MEL-28, IMR-32, HeLa, Hep G2 and NCI-H23. Mesuaferrin A (3), macluraxanthone (8) and α-mangostin (11) showed strong cytotoxicities as they possess significant inhibitory effects against all the cell lines. The structure-activity relationship (SAR) study revealed that the diprenyl, dipyrano and prenylated pyrano substituent groups of the xanthone derivatives contributed towards the cytotoxicities.
    Matched MeSH terms: Cell Death/drug effects
  7. Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, et al.
    Molecules, 2018 Dec 13;23(12).
    PMID: 30551671 DOI: 10.3390/molecules23123311
    In the present study, we have developed a green approach for the synthesis of silver nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found to be -15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl. DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine shrimp, and shown better photocatalytic activity against methylene blue. Based on the present research work, it can be concluded that DSAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
    Matched MeSH terms: Cell Death/drug effects
  8. Zulkipli NN, Zakaria R, Long I, Abdullah SF, Muhammad EF, Wahab HA, et al.
    Molecules, 2020 Sep 02;25(17).
    PMID: 32887218 DOI: 10.3390/molecules25173991
    Natural products remain a popular alternative treatment for many ailments in various countries. This study aimed to screen for potential mammalian target of rapamycin (mTOR) inhibitors from Malaysian natural substance, using the Natural Product Discovery database, and to determine the IC50 of the selected mTOR inhibitors against UMB1949 cell line. The crystallographic structure of the molecular target (mTOR) was obtained from Protein Data Bank, with Protein Data Bank (PDB) ID: 4DRI. Everolimus, an mTOR inhibitor, was used as a standard compound for the comparative analysis. Computational docking approach was performed, using AutoDock Vina (screening) and AutoDock 4.2.6 (analysis). Based on our analysis, asiaticoside and its derivative, asiatic acid, both from Centella asiatica, revealed optimum-binding affinities with mTOR that were comparable to our standard compound. The effect of asiaticoside and asiatic acid on mTOR inhibition was validated with UMB1949 cell line, and their IC50 values were 300 and 60 µM, respectively, compared to everolimus (29.5 µM). Interestingly, this is the first study of asiaticoside and asiatic acid against tuberous sclerosis complex (TSC) disease model by targeting mTOR. These results, coupled with our in silico findings, should prompt further studies, to clarify the mode of action, safety, and efficacy of these compounds as mTOR inhibitors.
    Matched MeSH terms: Cell Death/drug effects
  9. Fathoni I, Petitbois JG, Alarif WM, Abdel-Lateff A, Al-Lihaibi SS, Yoshimura E, et al.
    Molecules, 2020 Sep 01;25(17).
    PMID: 32882989 DOI: 10.3390/molecules25173986
    Cyanobacteria are reported as rich sources of secondary metabolites that provide biological activities such as enzyme inhibition and cytotoxicity. Ten depsipeptide derivatives (lyngbyabellins) were isolated from a Malaysian Moorea bouillonii and a Red Sea Okeania sp.: lyngbyabellins G (1), O (2), P (3), H (4), A (7), 27-deoxylyngbyabellin A (5), and homohydroxydolabellin (6). This study indicated that lyngbyabellins displayed cytotoxicity, antimalarial, and antifouling activities. The isolated compounds were tested for cytotoxic effect against human breast cancer cells (MCF7), for antifouling activity against Amphibalanus amphitrite barnacle larvae, and for antiplasmodial effect towards Plasmodium falciparum. Lyngbyabellins A and G displayed potent antiplasmodial effect against Plasmodium, whereas homohydroxydolabellin showed moderate effect. For antifouling activity, the side chain decreases the activity slightly, but the essential feature is the acyclic structure. As previously reported, the acyclic lyngbyabellins are less cytotoxic than the corresponding cyclic ones, and the side chain increases cytotoxicity. This study revealed that lyngbyabellins, despite being cytotoxic agents as previously reported, also exhibit antimalarial and antifouling activities. The unique chemical structures and functionalities of lyngbyabellin play an essential role in their biological activities.
    Matched MeSH terms: Cell Death/drug effects
  10. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2021 Aug 24;26(17).
    PMID: 34500560 DOI: 10.3390/molecules26175119
    α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG's cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
    Matched MeSH terms: Cell Death/drug effects*
  11. Hafiz ZZ, Amin M'M, Johari James RM, Teh LK, Salleh MZ, Adenan MI
    Molecules, 2020 Feb 17;25(4).
    PMID: 32079355 DOI: 10.3390/molecules25040892
    Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats' model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer's disease through inhibiting the AChE, inflammation, and oxidative stress activities.
    Matched MeSH terms: Cell Death/drug effects
  12. Mah SH, Ee GC, Teh SS, Rahmani M, Lim YM, Go R
    Molecules, 2012 Jul 10;17(7):8303-11.
    PMID: 22781442 DOI: 10.3390/molecules17078303
    Our continuing studies on secondary metabolites from the stem bark of Calophyllum soulattri has led to the isolation of another new diprenylated xanthone, phylattrin (1), in addition to five other xanthones and two common sterols. The xanthones are soulattrin (2), caloxanthone C (3), macluraxanthone (4), brasixanthone B (5) and trapezifolixanthone (6) while the sterols are stigmasterol (7) and β-sitosterol (8). The structures of these compounds were determined on the basis of spectroscopic analyses such as 1D and 2D-NMR, HRESIMS, IR and UV. Compounds 1-7 exhibited moderate cytotoxic activities against SNU-1, HeLa, Hep G2, NCI-H23, K562, Raji, LS174T, IMR-32 and SK-MEL-28 cells.
    Matched MeSH terms: Cell Death/drug effects
  13. Law JW, Law LN, Letchumanan V, Tan LT, Wong SH, Chan KG, et al.
    Molecules, 2020 Nov 17;25(22).
    PMID: 33212836 DOI: 10.3390/molecules25225365
    Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.
    Matched MeSH terms: Cell Death/drug effects
  14. Mphahlele MJ, Agbo EN, Choong YS
    Molecules, 2021 May 04;26(9).
    PMID: 34064448 DOI: 10.3390/molecules26092692
    The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,β-unsaturated carbonyl arms, and the presence of NH…O intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein-ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.
    Matched MeSH terms: Cell Death/drug effects
  15. Abbasi M, Yaqoob M, Haque RA, Iqbal MA
    Mini Rev Med Chem, 2021;21(1):69-78.
    PMID: 32767935 DOI: 10.2174/1389557520666200807130721
    Development of novel metallodrugs with pharmacological profile plays a significant role in modern medicinal chemistry and drug design. Metal complexes have shown remarkable clinical results in current cancer therapy. Gold complexes have attained attention due to their high antiproliferative potential. Gold-based drugs are used for the treatment of rheumatoid arthritis. Gold-containing compounds with selective and specific targets are capable to assuage the symptoms of a range of human diseases. Gold (I) species with labile ligands (such as Cl in TEPAuCl) interact with isolated DNA; therefore, this biomolecule has been considered as a target for gold drugs. Gold (I) has a high affinity towards sulfur and selenium. Due to this, gold (I) drugs readily interact with cysteine or selenocysteine residue of the enzyme to form protein-gold(I) thiolate or protein-gold (I) selenolate complexes that lead to inhibition of the enzyme activity. Au(III) compounds due to their square-planner geometriesthe same as found in cisplatin, represent a good source for the development of anti-tumor agents. This article aims to review the most important applications of gold products in the treatment of human colon cancer and to analyze the complex interplay between gold and the human body.
    Matched MeSH terms: Cell Death/drug effects
  16. Ismail NA, Shameli K, Wong MM, Teow SY, Chew J, Sukri SNAM
    Mater Sci Eng C Mater Biol Appl, 2019 Nov;104:109899.
    PMID: 31499959 DOI: 10.1016/j.msec.2019.109899
    In this study, a comparative study of effect using honey on copper nanoparticles (Cu-NPs) via simple, environmentally friendly process and inexpensive route was reported. Honey and ascorbic acid act as stabilizing and reducing agents with the assistance of sonochemical method. The products were characterized using UV-visible (UV-vis) spectroscopy, X-Ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Field-Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The reddish brown colour demonstrated the formation of Cu-NPs and UV-visible proved the plasmon resonance of Cu-NPs. XRD also confirmed a highly pure Cu-NPs obtained with absence of copper oxide in which the structure is crystalline. The spherical size of the Cu-NPs was acquire in the presence of honey which is 3.68 ± 0.78 nm with narrow particle distribution. The antibacterial activity was seen against gram-positive and gram-negative bacteria which are Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli). At higher concentration of Cu-NPs, they were more effective in killing both bacteria. The Cu-NPs without and with honey exhibited toxicities toward normal and cancerous cells. However, Cu-NPs without honey showed more potent killing activity against normal and cancer cells.
    Matched MeSH terms: Cell Death/drug effects
  17. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mgcell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.
    Matched MeSH terms: Cell Death/drug effects
  18. Lee WH, Loo CY, Rohanizadeh R
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:929-939.
    PMID: 30889767 DOI: 10.1016/j.msec.2019.02.030
    This study has evaluated the effect of functionalizing surface charges of hydroxyapatite on the modulation of loading and release of curcumin nanoparticles. The increase in loading and release of curcumin nanoparticles indirectly translates to enhanced anti-cancer effect. Owing to the hydrophobic characteristics of curcumin which have resulted in low bioavailability in cancer cells, the engineering curcumin into nanoparticles is therefore a viable solution to overcomes its limitation. In order to maintain a sustained release profile of curcumin nanoparticles, curcumin nanoparticles were loaded (Cur-NPs) onto hydroxyapatite (HA) via physical adsorption. To regulate the adsorption capacity of Cur-NPs onto HA, we functionalized HA with different carboxylic acids (lactic acid, tartaric acid and citric acid). The presence of carboxylic groups on HA significantly affected the binding and the release profile of Cur-NPs. The effects of Cur-NPs loaded HA were evaluated on breast cancer cell line (MCF-7), which included cell proliferation, cellular uptake of Cur-NPs, apoptosis and cell cycle analysis. The results showed that carboxylic acid-functionalized HA demonstrated higher anti-proliferating activity and time dependent cytoplasmic uptake of Cur-NPs in MCF-7 cells compared to unmodified HA. In addition, Cur-NPs loaded on functionalized HA induced higher apoptosis and cell cycle arrest in MCF-7 cells compared to unmodified HA. The present study indicates that the delivery of Cur-NPs to breast cancer using carboxylic acid-functionalized HA carrier could improve their anti-cancer activities.
    Matched MeSH terms: Cell Death/drug effects
  19. Aslam Khan MU, Haider A, Abd Razak SI, Abdul Kadir MR, Haider S, Shah SA, et al.
    J Tissue Eng Regen Med, 2021 04;15(4):322-335.
    PMID: 33432773 DOI: 10.1002/term.3168
    The importance of bone scaffolds has increased many folds in the last few years; however, during bone implantation, bacterial infections compromise the implantation and tissue regeneration. This work is focused on this issue while not compromising on the properties of a scaffold for bone regeneration. Biocomposite scaffolds (BS) were fabricated via the freeze-drying technique. The samples were characterized for structural changes, surface morphology, porosity, and mechanical properties through spectroscopic (Fourier transform-infrared [FT-IR]), microscopic (scanning electron microscope [SEM]), X-ray (powder X-ray diffraction and energy-dispersive X-ray), and other analytical (Brunauer-Emmett-Teller, universal testing machine Instron) techniques. Antibacterial, cellular, and hemocompatibility assays were performed using standard protocols. FT-IR confirmed the interactions of all the components. SEM illustrated porous and interconnected porous morphology. The percentage porosity was in the range of 49.75%-67.28%, and the pore size was 215.65-470.87 µm. The pore size was perfect for cellular penetration. Thus, cells showed significant proliferation onto these scaffolds. X-ray studies confirmed the presence of nanohydroxyapatite and graphene oxide (GO). The cell viability was 85%-98% (BS1-BS3), which shows no significant toxicity of the biocomposite. Furthermore, the biocomposites exhibited better antibacterial activity, no effect on the blood clotting (normal in vitro blood clotting), and less than 5% hemolysis. The ultimate compression strength for the biocomposites increased from 4.05 to 7.94 with an increase in the GO content. These exciting results revealed that this material has the potential for possible application in bone tissue engineering.
    Matched MeSH terms: Cell Death/drug effects
  20. Matsusaka K, Ishima Y, Maeda H, Kinoshita R, Ichimizu S, Taguchi K, et al.
    J Pharm Sci, 2019 11;108(11):3592-3598.
    PMID: 31288036 DOI: 10.1016/j.xphs.2019.07.002
    Nanosize plasma proteins could be used as a biomimetic drug delivery system (DDS) for cancer treatment when loaded with anticancer drugs based on the fact that plasma proteins can serve as a source of nutrients for cancer cells. This prompted us to investigate the potential of α1-acid glycoprotein (AGP) for this role because it is a nanosize plasma protein and binds a variety of anticancer agents. Pharmacokinetic analyses indicated that AGP is distributed more extensively in tumor tissue than human serum albumin, which was already established as a cancer DDS carrier. AGP is possibly being incorporated into tumor cells via endocytosis pathways. Moreover, a synthetic AGP-derived peptide which possesses a high ability to form an α-helix, as deduced from the primary structure of AGP, was also taken up by the tumor cells. AGP loaded with anticancer agents, such as paclitaxel or nitric oxide, efficiently induced tumor cell death. These results suggest that AGP has the potential to be a novel DDS carrier for anticancer agents.
    Matched MeSH terms: Cell Death/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links