Displaying publications 21 - 40 of 116 in total

Abstract:
Sort:
  1. Tay ST, Na SL, Tajuddin TH
    Mycoses, 2008 Nov;51(6):515-9.
    PMID: 18498307 DOI: 10.1111/j.1439-0507.2008.01516.x
    Cryptococcus albidus and C. laurentii were the predominant non-neoformans cryptococci isolated during an environmental sampling study for C. gattii at Klang Valley, Malaysia. Cryptococcus gattii was not isolated from any of the environmental samples. Cryptococcus albidus and C. laurentii were isolated mainly from vegetative samples of Eucalyptus trees and bird droppings. Upon testing on canavanine-glycine-bromothymol blue (CGB) agar, all the C. albidus isolates remained unchanged. Interestingly, a total of 29 (76.3%) C. laurentii isolates formed blue colours on the CGB agar. Sequence analysis of ITS1-5.8rDNA-ITS2 gene sequences (468 bp) of four CGB-blue C. laurentii isolates demonstrated the closest match (99%) with that of C. laurentii CBS 7140. This study demonstrated the diverse environmental niche of C. albidus and C. laurentii in Malaysia.
    Matched MeSH terms: Culture Media/chemistry*
  2. Tan SL, Sulaiman S, Pingguan-Murphy B, Selvaratnam L, Tai CC, Kamarul T
    Cell Tissue Bank, 2011 Feb;12(1):59-70.
    PMID: 19953328 DOI: 10.1007/s10561-009-9164-x
    This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.
    Matched MeSH terms: Culture Media/chemistry
  3. Tan LK, Ooi PT, Carniel E, Thong KL
    PLoS One, 2014;9(8):e106329.
    PMID: 25170941 DOI: 10.1371/journal.pone.0106329
    Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (10(4) cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.
    Matched MeSH terms: Culture Media/chemistry*
  4. Tan IS, Lam MK, Lee KT
    Carbohydr Polym, 2013 Apr 15;94(1):561-6.
    PMID: 23544575 DOI: 10.1016/j.carbpol.2013.01.042
    Utilization of macroalgae biomass for bioethanol production appears as an alternative source to lignocellulosic materials. In this study, for the first time, Amberlyst (TM)-15 was explored as a potential catalyst to hydrolyze carbohydrates from Eucheuma cottonii extract to simple reducing sugar prior to fermentation process. Several important hydrolysis parameters were studied for process optimization including catalyst loading (2-5%, w/v), reaction temperature (110-130°C), reaction time (0-2.5 h) and biomass loading (5.5-15.5%, w/v). Optimum sugar yield of 39.7% was attained based on the following optimum conditions: reaction temperature at 120°C, catalyst loading of 4% (w/v), 12.5% (w/v) of biomass concentration and reaction time of 1.5h. Fermentation of the hydrolysate using Saccharomyces cerevisiae produced 0.33 g/g of bioethanol yield with an efficiency of 65%. The strategy of combining heterogeneous-catalyzed hydrolysis and fermentation with S. cerevisiae could be a feasible strategy to produce bioethanol from macroalgae biomass.
    Matched MeSH terms: Culture Media/chemistry
  5. Tan AW, Liau LL, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B
    Sci Rep, 2016 Feb 17;6:21828.
    PMID: 26883761 DOI: 10.1038/srep21828
    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.
    Matched MeSH terms: Culture Media/chemistry*
  6. Taha RM, Haron NW
    Pak J Biol Sci, 2008 Apr 01;11(7):1021-6.
    PMID: 18810972
    In the present study, various explants of Murraya paniculata (Jack) Linn., such as cotyledons, shoots and young stems were cultured on MS medium supplemented with various concentrations of Benzyl Amino Purine (BAP) under 25 +/- 1 degree C with 16 h light and 8 h dark and also 8 h light and 16 h dark to obtain complete plant regeneration. In vitro flowering was observed from shoot explants cultured on MS supplemented with 0.5-2.0 mg L(-1) Naphthalene Acetic Acid (NAA) and also on MS basal medium under similar conditions. The leaves and flowers obtained from both in vivo and in vitro conditions were examined and compared. Morphological studies such as leaf clearing, epidermal peeling were studied using light and scanning electron microscope. Macromorphological studies of the flowers produced from in vivo and in vitro conditions were also examined. Morphologically, there were no differences between in vivo and in vitro flowers except the flowers produced from tissue culture systems were smaller in size with protruding stigmas. Differences were also found in the number of layers of palisade cells and the presence or absence of epicuticle layer of the leaves. Leaves produced from tissue culture system were smaller in size with membranous texture. Stomata were present only on the abaxial surfaces of both in vivo and in vitro leaves but the stomata were raised above the epidermis in the latter.
    Matched MeSH terms: Culture Media/chemistry
  7. Sudheer S, Alzorqi I, Ali A, Cheng PG, Siddiqui Y, Manickam S
    Int J Med Mushrooms, 2018;20(1):89-100.
    PMID: 29604916 DOI: 10.1615/IntJMedMushrooms.2017024588
    This study investigates the cultivation of Ganoderma lucidum using different agricultural biomasses from Malaysia. Five different combinations of rubber wood sawdust, empty fruit bunch fiber, and mesocarp fiber from oil palm, alone and in combination, were used to cultivate G. lucidum. Although all the substrate combinations worked well to grow the mushroom, the highest biological efficiency was obtained from the combination of empty fruit bunch fiber with sawdust. A total yield of 27% was obtained from empty fruit bunch fiber with sawdust, followed by sawdust (26%), empty fruit bunch fiber (19%), mesocarp fiber with sawdust (19%), and mesocarp fiber (16%). The quality of mushrooms was proved by proximate analysis and detection of phenolic compounds and flavonoids. The antioxidant activity verified by DPPH, ferric-reducing ability of plasma, and ABTS analyses revealed that the empty fruit bunch fiber with sawdust had higher activity than the other substrates.
    Matched MeSH terms: Culture Media/chemistry
  8. Subakir H, Chong YM, Chan YF, Hasan MS, Jamaluddin MFH, Pang YK, et al.
    J Med Microbiol, 2020 Jan;69(1):49-51.
    PMID: 31750812 DOI: 10.1099/jmm.0.001108
    Introduction.Burkholderia pseudomallei (melioidosis) is an important cause of community-acquired pneumonia (CAP) in the tropics. Selective medium is recommended for laboratory diagnosis with non-sterile respiratory samples, while PCR is not routinely used due to variable reported performance. The effectiveness of these diagnostic modalities varies by site.Aim. To compare selective media and real-time PCR (qPCR) with routine media in detecting B. pseudomallei in CAP respiratory samples in a low-incidence setting in Kuala Lumpur, Malaysia.Methodology. Respiratory samples were routinely cultured on blood, chocolate and MacConkey agar (RESP-ROUTINE), and compared to culture on selective Ashdown medium (RESP-SELECTIVE) and qPCR. The gold standard was routine culture of B. pseudomallei from any site (ALL-ROUTINE).Results.B. pseudomallei was detected in 8/204 (3.9 %) samples. Overall sensitivity rates differed (P=0.03) for qPCR (100%), RESP-SELECTIVE (87.5%) and RESP-ROUTINE (50%). There was a trend towards lower median days to positive culture for RESP-SELECTIVE (1 day) compared to RESP-ROUTINE (2 days, P=0.08) and ALL-ROUTINE (2 days, P=0.06). Reagent costs for each additional detection were USD59 for RESP-SELECTIVE and USD354 for PCR.Conclusions. In a low-incidence setting, selective culture of respiratory samples on Ashdown was more sensitive and allowed quicker identification than routine media, at reasonable cost. Blood cultures are critical, confirming four cases missed by routine respiratory culture. Selective medium is useful in early pneumonia (pre-sepsis) and resource-limited settings where blood cultures are infrequently done. Real-time PCR is costly, but highly sensitive and useful for high-risk patients with diabetes, cancer or immunosuppressants, or requiring ventilation or intensive care.
    Matched MeSH terms: Culture Media/chemistry*
  9. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Noor NM, et al.
    FEMS Microbiol Lett, 2014 Jun;355(2):177-84.
    PMID: 24828482 DOI: 10.1111/1574-6968.12469
    Isoprenoids are a large, diverse group of secondary metabolites which has recently raised a renewed research interest due to genetic engineering advances, allowing specific isoprenoids to be produced and characterized in heterologous hosts. Many researches on metabolic engineering of heterologous hosts for increased isoprenoid production are focussed on Escherichia coli and yeasts. E. coli, as most prokaryotes, use the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway for isoprenoid production. Yeasts on the other hand, use the mevalonate pathway which is commonly found in eukaryotes. However, Lactococcus lactis is an attractive alternative host for heterologous isoprenoid production. Apart from being food-grade, this Gram-positive prokaryote uses the mevalonate pathway for isoprenoid production instead of the MEP pathway. Previous studies have shown that L. lactis is able to produce sesquiterpenes through heterologous expression of plant sesquiterpene synthases. In this work, we analysed the gene expression of the lactococcal mevalonate pathway through RT-qPCR to successfully engineer L. lactis as an efficient host for isoprenoid production. We then overexpressed the mvk gene singly or co-expressed with the mvaA gene as an attempt to increase β-sesquiphellandrene production in L. lactis. It was observed that co-expression of mvk with mvaA doubled the amount of β-sesquiphellandrene produced.
    Matched MeSH terms: Culture Media/chemistry
  10. Sivakumar P, Law YS, Ho CL, Harikrishna JA
    Acta. Biol. Hung., 2010 Sep;61(3):313-21.
    PMID: 20724277 DOI: 10.1556/ABiol.61.2010.3.7
    An efficient in vitro plant regeneration system was established for elite, recalcitrant Malaysian indica rice, Oryza sativa L. CV. MR 219 using mature seeds as explant on Murashige and Skoog and Chu N6 media containing 2,4-dichlorophenoxy acetic acid and kinetin either alone or in different combinations. L-proline, casein hydrolysate and L-glutamine were added to callus induction media for enhancement of embryogenic callus induction. The highest frequency of friable callus induction (84%) was observed in N6 medium containing 2.5 mg l(-1) 2,4-dichlorophenoxy acetic acid, 0.2 mg l(-1) kinetin, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate, 20 mg l(-1) L-glutamine and 30 g l(-1) sucrose under culture in continuous lighting conditions. The maximum regeneration frequency (71%) was observed, when 30-day-old N6 friable calli were cultured on MS medium supplemented with 3 mg l(-1) 6-benzyl aminopurine, 1 mg l(-1) naphthalene acetic acid, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate and 3% maltose. Developed shoots were rooted in half strength MS medium supplemented with 2% sucrose and were successfully transplanted to soil with 95% survival. This protocol may be used for other recalcitrant indica rice genotypes and to transfer desirable genes in to Malaysian indica rice cultivar MR219 for crop improvement.
    Matched MeSH terms: Culture Media/chemistry
  11. Sirajuddin SA, Sundram S
    Braz J Microbiol, 2020 Sep;51(3):919-929.
    PMID: 32078730 DOI: 10.1007/s42770-020-00241-0
    Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria's cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol's ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.
    Matched MeSH terms: Culture Media/chemistry
  12. Shudirman S, Abang Kassim A, Shamsol Anuar NS, Utsumi M, Shimizu K, Muhammad Yuzir MA, et al.
    J Gen Appl Microbiol, 2021 Jul 31;67(3):92-99.
    PMID: 33642451 DOI: 10.2323/jgam.2020.08.001
    Musty odor production by actinomycetes is usually related to the presence of geosmin and 2-methylisoborneol (2-MIB), which are synthesized by enzymes encoded by the geoA and tpc genes, respectively. Streptomyces spp. strain S10, which was isolated from a water reservoir in Malaysia, has the ability to produce geosmin when cultivated in a basal salt (BS) solid medium, but no 2-MIB production occurred during growth in BS medium. Strain S10 could produce higher levels of geosmin when the phosphate concentration was limited to 0.05 mg/L, with a yield of 17.53 ± 3.12 ✕ 105 ng/L, compared with growth in BS medium. Interestingly, 2-MIB production was suddenly detected when the nitrate concentration was limited to 1.0 mg/L, with a yield of 1.4 ± 0.11 ✕ 105 ng/L. Therefore, it was concluded that phosphate- and nitrate-limiting conditions could induce the initial production of geosmin and 2-MIB by strain S10. Furthermore, a positive amplicon of geoA was detected in strain S10, but no tpc amplicon was detected by PCR analysis. Draft genome sequence analysis showed that one open reading frame (ORF) contained a conserved motif of geosmin synthase with 95% identity with geoA in Streptomyces coelicolor A3 (2). In the case of the tpc genes, it was found that one ORF showed 23% identity to the known tpc gene in S. coelicolor A3(2), but strain S10 lacked one motif in the N-terminus.
    Matched MeSH terms: Culture Media/chemistry
  13. Sayyed RZ, Wani SJ, Alarfaj AA, Syed A, El-Enshasy HA
    PLoS One, 2020;15(1):e0220095.
    PMID: 31910206 DOI: 10.1371/journal.pone.0220095
    There are numerous reports on poly-β-hydroxybutyrate (PHB) depolymerases produced by various microorganisms isolated from various habitats, however, reports on PHB depolymerase production by an isolate from plastic rich sites scares. Although PHB has attracted commercial significance, the inefficient production and recovery methods, inefficient purification of PHB depolymerase and lack of ample knowledge on PHB degradation by PHB depolymerase have hampered its large scale commercialization. Therefore, to ensure the biodegradability of biopolymers, it becomes imperative to study the purification of the biodegrading enzyme system. We report the production, purification, and characterization of extracellular PHB depolymerase from Stenotrophomonas sp. RZS7 isolated from a dumping yard rich in plastic waste. The isolate produced extracellular PHB depolymerase in the mineral salt medium (MSM) at 30°C during 4 days of incubation under shaking. The enzyme was purified by three methods namely ammonium salt precipitation, column chromatography, and solvent purification. Among these purification methods, the enzyme was best purified by column chromatography on the Octyl-Sepharose CL-4B column giving optimum yield (0.7993 Umg-1mL-1). The molecular weight of purified PHB depolymerase was 40 kDa. Studies on the assessment of biodegradation of PHB in liquid culture medium and under natural soil conditions confirmed PHB biodegradation potential of Stenotrophomonas sp. RZS7. The results obtained in Fourier-Transform Infrared (FTIR) analysis, High-Performance Liquid Chromatography (HPLC) study and Gas Chromatography Mass-Spectrometry (GC-MS) analysis confirmed the biodegradation of PHB in liquid medium by Stenotrophomonas sp. RZS7. Changes in surface morphology of PHB film in soil burial as observed in Field Emission Scanning Electron Microscopy (FESEM) analysis confirmed the biodegradation of PHB under natural soil environment. The isolate was capable of degrading PHB and it resulted in 87.74% biodegradation. A higher rate of degradation under the natural soil condition is the result of the activity of soil microbes that complemented the biodegradation of PHB by Stenotrophomonas sp. RZS7.
    Matched MeSH terms: Culture Media/chemistry
  14. Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, et al.
    Microbiologyopen, 2021 01;10(1):e1160.
    PMID: 33650793 DOI: 10.1002/mbo3.1160
    Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB-M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
    Matched MeSH terms: Culture Media/chemistry
  15. Ridzlan FR, Bahaman AR, Khairani-Bejo S, Mutalib AR
    Trop Biomed, 2010 Dec;27(3):632-8.
    PMID: 21399605 MyJurnal
    Leptospirosis is recognized as one of the important zoonotic diseases in the world including Malaysia. A total of 145 soil and water samples were collected from selected National Service Training Centres (NSTC) in Kelantan and Terengganu. The samples were inoculated into modified semisolid Ellinghausen McCullough Johnson Harris (EMJH) medium, incubated at room temperature for 1 month and examined under the dark-field microscope. Positive growth of the leptospiral isolates were then confirmed with 8-Azaguanine Test, Polymerase Chain Reaction (PCR) assay and Microscopic Agglutination Test (MAT). Fifteen cultures (10.34%) exhibited positive growths which were seen under dark field microscope whilst only 20% (3/15) were confirmed as pathogenic species. based on 8-Azaguanine Test and PCR. Serological identification of the isolates with MAT showed that hebdomadis was the dominant serovar in Terengganu. Pathogenic leptospires can be detected in Malaysian environment and this has the potential to cause an outbreak. Therefore, precautionary steps against leptospirosis should be taken by camp authorities to ensure the safety of trainees.
    Matched MeSH terms: Culture Media/chemistry
  16. Rahman RN, Baharum SN, Salleh AB, Basri M
    J Microbiol, 2006 Dec;44(6):583-90.
    PMID: 17205035
    In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of production were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions (Mg2+) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, Na+, was found to stimulate the production of S5 lipase.
    Matched MeSH terms: Culture Media/chemistry
  17. Rad MA, Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T
    Scanning, 2017;2017:8393578.
    PMID: 29109826 DOI: 10.1155/2017/8393578
    The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.
    Matched MeSH terms: Culture Media/chemistry
  18. Philip N, Garba B, Neela VK
    Appl Microbiol Biotechnol, 2018 Jul;102(13):5427-5435.
    PMID: 29736823 DOI: 10.1007/s00253-018-9047-9
    Preservation of leptospiral cultures is tantamount to success in leptospiral diagnostics, research, and development of preventive strategies. Each Leptospira isolate has imperative value not only in disease diagnosis but also in epidemiology, virulence, pathogenesis, and drug development studies. As the number of circulating leptospires is continuously increasing and congruent with the importance to retain their original characteristics and properties, an efficient long-term preservation is critically needed to be well-established. However, the preservation of Leptospira is currently characterized by difficulties and conflicting results mainly due to the biological nature of this organism. Hence, this review seeks to describe the efforts in developing efficient preservation methods, to discover the challenges in preserving this organism and to identify the factors that can contribute to an effective long-term preservation of Leptospira. Through the enlightenment of the previous studies, a potentially effective method has been suggested. The article also attempts to evaluate novel strategies used in other industrial and biotechnological preservation efforts and consider their potential application to the conservation of Leptospira spp.
    Matched MeSH terms: Culture Media/chemistry
  19. Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN
    J Microbiol Methods, 2011 Feb;84(2):161-6.
    PMID: 21094190 DOI: 10.1016/j.mimet.2010.11.008
    The search for antimicrobial agents from plants has been a growing interest in the last few decades. However, results generated from many of these studies cannot be directly compared due to the absence of standardization in particular antimicrobial methods employed. The need for established methods with consistent results for the evaluation of antimicrobial activities from plant extracts has been proposed by many researchers. Nevertheless, there are still many studies reported in the literature describing different methodologies. The aim of this study was to find optimal methods to give consistent quantitative antimicrobial results for studying plant extracts. Three different agar-based assays (pour plate disc diffusion (PPDD), streak plate disc diffusion (SPDD) and well-in agar (WA)) and one broth-based (turbidometric (TB)) assay were used in this study. Extracts from two plant species (Duabanga grandiflora and Acalypha wilkesiana) were tested on two bacterial species, namely Escherichia coli and Staphylococcus aureus. Amongst the agar-based assays, PPDD produced the most reproducible results. TB was able to show the inhibitory effects of the test samples on the growth kinetic of the bacteria including plant extracts with low polarity. We propose that both agar- (i.e PPDD) and broth-based assays should be employed when assessing the antimicrobial activity of plant crude extracts.
    Matched MeSH terms: Culture Media/chemistry
  20. Ooi MF, Foo HL, Loh TC, Mohamad R, Rahim RA, Ariff A
    Sci Rep, 2021 Apr 07;11(1):7617.
    PMID: 33828119 DOI: 10.1038/s41598-021-87081-6
    Postbiotic RS5, produced by Lactiplantibacillus plantarum RS5, has been identified as a promising alternative feed supplement for various livestock. This study aimed to lower the production cost by enhancing the antimicrobial activity of the postbiotic RS5 by improving the culture density of L. plantarum RS5 and reducing the cost of growth medium. A combination of conventional and statistical-based approaches (Fractional Factorial Design and Central Composite Design of Response Surface Methodology) was employed to develop a refined medium for the enhancement of the antimicrobial activity of postbiotic RS5. A refined medium containing 20 g/L of glucose, 27.84 g/L of yeast extract, 5.75 g/L of sodium acetate, 1.12 g/L of Tween 80 and 0.05 g/L of manganese sulphate enhanced the antimicrobial activity of postbiotic RS5 by 108%. The cost of the production medium was reduced by 85% as compared to the commercially available de Man, Rogosa and Sharpe medium that is typically used for Lactobacillus cultivation. Hence, the refined medium has made the postbiotic RS5 more feasible and cost-effective to be adopted as a feed supplement for various livestock industries.
    Matched MeSH terms: Culture Media/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links