Displaying publications 21 - 40 of 112 in total

Abstract:
Sort:
  1. Siew GY, Ng WL, Tan SW, Alitheen NB, Tan SG, Yeap SK
    PeerJ, 2018;6:e4266.
    PMID: 29511604 DOI: 10.7717/peerj.4266
    Durian (Durio zibethinus) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity,H
    E
     = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10-3. Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called "clones", "varieties", or "cultivars". Such matters have a direct impact on the regulation and management of durian genetic resources in the region.
    Matched MeSH terms: DNA Fingerprinting
  2. Shuan Ju Teh C, Thong KL, Osawa R, Heng Chua K
    J Gen Appl Microbiol, 2011;57(1):19-26.
    PMID: 21478644
    Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.
    Matched MeSH terms: DNA Fingerprinting/methods*
  3. SharifahNany RahayuKarmilla S, Aedrianee AR, Nur Haslindawaty AR, Nur Azeelah A, Panneerchelvam S, Norazmi MN, et al.
    Int J Legal Med, 2018 Jul;132(4):1087-1090.
    PMID: 29052042 DOI: 10.1007/s00414-017-1697-0
    Peninsular Malaysia is populated by the Malays, Chinese, Indians, and Orang Asli. We have analyzed 17 Y-STRs loci for 243 randomly unrelated individuals, which include 153 Malays (7 Acheh, 13 Champa, 11 Rawa, 9 Kedah, 23 Minang, 15 Bugis, 43 Kelantan, 14 Jawa, and 18 Bugis) and 90 Orang Asli [54 Semang (16 Kensiu, 13 Lanoh, 25 Bateq); 30 Senoi (21 Semai, 9 Che Wong); and 6 Proto-Malay (6 Orang Kanaq)] from selected settlements in Peninsular Malaysia using the AmpFlSTR Yfiler™ kit (Applied Biosystems™). The overall haplotype diversity is 0.9966, i.e., 0.9984 for the Malays and 0.9793 for the Orang Asli. A total of 158 haplotypes (65.02%) were individually unique. The p value and pairwise Rst analysis was calculated to show the genetic structure of the samples with other world populations (from YHRD website). Based on the Y-STR data, Champa, Acheh, Kedah, Minang, and Kelantan are clustered together. Lanoh and Kensiu (Semang) are very closely related, suggesting similar paternal ancestry. Jawa Malays and Indonesian Java, plus the Bugis Malays and Australian Aborigines shared high degree of paternal lineage affinity. This study presents data for very precious relict groups, who are the earliest inhabitants of Peninsular Malaysia.
    Matched MeSH terms: DNA Fingerprinting
  4. Seena S, Duarte S, Pascoal C, Cássio F
    PLoS One, 2012;7(4):e35884.
    PMID: 22558256 DOI: 10.1371/journal.pone.0035884
    The worldwide-distributed aquatic fungus Articulospora tetracladia Ingold is a dominant sporulating species in streams of the Northwest Iberian Peninsula. To elucidate the genetic diversity of A. tetracladia, we analyzed isolates collected from various types of plant litter or foam in streams from North and Central Portugal and North Spain, between 2000 and 2010. Genetic diversity of these fungal populations was assessed by denaturing gradient gel electrophoresis (DGGE) fingerprints and by using ITS1-5.8S-ITS2 barcodes. Moreover, ITS1-5.8S-ITS2 barcodes of A. tetracladia reported in other parts of the world (Central Europe, United Kingdom, Canada, Japan and Malaysia) were retrieved from the National Center for Biotechnology (NCBI) and the National Institute of Technology and Evaluation Biological Resource Center (NBRC) to probe into genetic diversity of A. tetracladia. PCR-DGGE of ITS2 region of 50 Iberian fungal isolates distinguished eight operational taxonomic units (OTUs), which were similar to those obtained from neighboring trees based on ITS2 gene sequences. On the other hand, ITS1-5.8S-ITS2 barcodes of 68 fungal isolates yielded nine OTUs, but five fungal isolates were not assigned to any of these OTUs. Molecular diversity was highest for OTU-8, which included only European isolates. Two haplotypes were observed within OTU-8 and OTU-9, while only one haplotype was found within each of the remaining OTUs. Malaysia did not share haplotypes with other countries. Overall results indicate that, apart from the Malaysian genotypes, A. tetracladia genotypes were geographically widespread irrespective of sampling time, sites or substrates. Furthermore, PCR-DGGE appeared to be a rapid tool for assessing intraspecific diversity of aquatic hyphomycetes.
    Matched MeSH terms: DNA Fingerprinting
  5. Seah LH, Jeevan NH, Othman MI, Jaya P, Ooi YS, Wong PC, et al.
    Forensic Sci Int, 2003 Dec 17;138(1-3):134-7.
    PMID: 14642733
    Allele frequencies for the 15 STR loci in the AmpFlSTR Identifiler kit were determined and compared for the three main ethnic groups of the Malaysian population comprising 210 Malays, 219 Chinese and 209 Indians. Blood was placed on FTA paper and DNA was purified in-situ.
    Matched MeSH terms: DNA Fingerprinting/methods
  6. Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MSM, Samad S, et al.
    Microbiology (Reading), 1999 Sep;145 ( Pt 9):2405-2413.
    PMID: 10517593 DOI: 10.1099/00221287-145-9-2405
    Epidemiological studies, using the probe Ca3, have shown that in a given patient population a single cluster of genetically related Candida albicans isolates usually predominates. The authors have investigated whether these local clusters are part of a single group, geographically widespread and highly prevalent as an aetiological agent of various types of candidiasis. An unrooted neighbour-joining tree of 266 infection-causing C. albicans isolates (each from a different individual) from 12 geographical regions in 6 countries was created, based on genetic distances generated by Ca3 fingerprinting. Thirty-seven per cent of all isolates formed a single genetically homogeneous cluster (cluster A). The remainder of isolates were genetically diverse. Using the maximum branch length within cluster A as a cut-off, they could be divided into 37 groups, whose prevalence ranged between 0.3% and 9%. Strains from cluster A were highly prevalent in all but one geographical region, with a mean prevalence across all regions of 41%. When isolates were separated into groups based on patient characteristics or type of infection, strains from cluster A had a prevalence exceeding 27% in each group, and their mean prevalence was 43% across all patient characteristics. These data provide evidence that cluster A constitutes a general-purpose genotype, which is geographically widespread and acts as a predominant aetiological agent of all forms of candidiasis in all categories of patients surveyed.
    Matched MeSH terms: DNA Fingerprinting
  7. Samejima M, Nakamura Y, Nambiar P, Minaguchi K
    Int J Legal Med, 2012 Jul;126(4):677-83.
    PMID: 22584910 DOI: 10.1007/s00414-012-0705-7
    We investigated 12 X-chromosomal short tandem repeat (STR) polymorphisms in 283 unrelated Malay individuals (160 males and 123 females) living in and around Kuala Lumpur using the Investigator Argus X-12 kit. Heterozygosity among the present 12 X-STRs showed a distribution of from 55.3 to 93.5 %. The diversity values of the haplotypes constructed using four closely linked groups were all higher than 0.9865. A comparison of allelic frequency in each system and haplotype variation indicated that the nature of these X-STRs in the Malay population differed from that in East Asian, European, or African populations. Several microvariant alleles found in the Malay population were characterized and compared with known sequence data. The present data may be helpful in forensic casework such as personal identification and kinship testing in the Malay population in Malaysia.
    Matched MeSH terms: DNA Fingerprinting
  8. Rashid MNA, Mahat NA, Khan HO, Wahab RA, Maarof H, Ismail D, et al.
    Int J Legal Med, 2020 Sep;134(5):1675-1678.
    PMID: 32222814 DOI: 10.1007/s00414-020-02279-z
    The use of 21 autosomal STR loci for human identification has been gaining popularity throughout the world. It has been indicated that the forensic statistical parameters for supporting the use of 21 STR loci varied among different populations. Hitherto, such data for the diverse Malaysian populations remain unreported, rendering doubts in the court of law about its real ability for human identification in Malaysian population. Using the GlobalFiler™ Express PCR Amplification Kit, complete DNA profiles of 21 STR loci from buccal swabs of convicted Malaysian criminal (n = 570; 190 each for Malays, Chinese, and Indians) (by the year 2016-2017) were analyzed for their allele frequencies, exact test of Hardy-Weinberg equilibrium, observed and expected heterozygosity, power of discrimination, power of exclusion, match probability, and polymorphism information content. Most of the loci were found to be in the Hardy-Weinberg equilibrium after the Bonferroni correction. Being the most informative locus, SE33 demonstrated the highest power of discrimination and power of exclusion, indicating its usefulness to discriminate individuals. In contrast, TPOX had the lowest power of discrimination and power of exclusion, as well as being the less informative genetic locus for all Malaysian population studied here. The probabilities that two individuals would share the same DNA profiles among the Malaysian Malays, Chinese, and Indians, as well as in general Malaysian population, were 1.3713 × 10-25, 2.8822 × 10-25, 7.5668 × 10-26, and 1.0385 × 10-26, respectively. The results obtained here were found comparable with similar studies reported in other populations. Hence, its robustness for forensic human identification among the Malaysian populations is, therefore, statistically supported.
    Matched MeSH terms: DNA Fingerprinting/instrumentation*
  9. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M
    J Microbiol Methods, 2001 Aug;46(2):131-9.
    PMID: 11412923
    Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.
    Matched MeSH terms: DNA Fingerprinting
  10. Radu S, Lihan S, Idris A, Ling OW, Al-Haddawi MH, Rusul G
    PMID: 10928372
    Seven isolates of Burkholderia pseudomallei from cases of melioidosis in human (2 isolates) and animal (2 isolates), cat (one isolate) and from soil samples (2 isolates) were examined for in vitro sensitivity to 14 antimicrobial agents and for presence of plasmid DNA. Randomly amplified polymorphic DNA (RAPD) analysis was used to type the isolates, using two arbitrary primers. All isolates were sensitive to chloramphenicol, kanamycin, carbenicillin, rifampicin, enrofloxacin, tetracycline and sulfamethoxazole-trimethoprim. No plasmid was detected in all the isolates tested. RADP fingerprinting demonstrated genomic relationship between isolates, which provides an effective method to study the epidemiology of the isolates examined.
    Matched MeSH terms: DNA Fingerprinting
  11. Radu S, Ho YK, Lihan S, Yuherman, Rusul G, Yasin RM, et al.
    Epidemiol Infect, 1999 Oct;123(2):225-32.
    PMID: 10579441
    A total of 31 strains of Vibrio cholerae O1 (10 from outbreak cases and 7 from surface water) and non-O1 (4 from clinical and 10 from surface water sources) isolated between 1993 and 1997 were examined with respect to presence of cholera enterotoxin (CT) gene by PCR-based assays, resistance to antibiotics, plasmid profiles and random amplified polymorphic DNA (RAPD) analysis. All were resistant to 9 or more of the 17 antibiotics tested. Identical antibiotic resistance patterns of the isolates may indicate that they share a common mode of developing antibiotic resistance. Furthermore, the multiple antibiotic resistance indexing showed that all strains tested originated from high risk contamination. Plasmid profile analysis by agarose gel electrophoresis showed the presence of small plasmids in 12 (7 non-O1 and 5 O1 serotypes) with sizes ranging 1.3-4.6 MDa. The CT gene was detected in all clinical isolates but was present in only 14 (6 O1 serotype and 8 non-O1 serotype) isolates from environmental waters. The genetic relatedness of the clinical and environmental Vibrio cholerae O1 and non-O1 strains was investigated by RAPD fingerprinting with four primers. The four primers generated polymorphisms in all 31 strains of Vibrio cholerae tested, producing bands ranging from < 250 to 4500 bp. The RAPD profiles revealed a wide variability and no correlation with the source of isolation. This study provides evidence that Vibrio cholerae O1 and non-O1 have significant public health implications.
    Matched MeSH terms: DNA Fingerprinting
  12. Pern YC, Lee SY, Ng WL, Mohamed R
    3 Biotech, 2020 Mar;10(3):103.
    PMID: 32099744 DOI: 10.1007/s13205-020-2072-2
    Tree species in the Aquilarieae tribe of the Thymelaeaceae family produce agarwood, a natural product highly valued for its fragrance, but the species are under threat due to indiscriminate harvesting. For conservation of these species, molecular techniques such as DNA profiling have been used. In this study, we assessed cross-amplification of microsatellite markers, initially developed for three Aquilaria species (A.crassna, A.malaccensis, and A.sinensis), on ten other agarwood-producing species, including members of Aquilaria (A.beccariana, A.hirta, A.microcarpa, A.rostrata, A.rugosa, A.subintegra, and A.yunnanensis) and Gyrinops (G.caudata, G.versteegii, and G.walla), both from the Aquilarieae tribe. Primers for 18 out of the 30 microsatellite markers successfully amplified bands of expected sizes in 1 sample each of at least 10 species. These were further used to genotype 74 individuals representing all the 13 studied species, yielding 13 cross-amplifiable markers, of which only 1 being polymorphic across all species. At each locus, the number of alleles ranged from 7 to 23, indicating a rather high variability. Four markers had relatively high species discrimination power. Our results demonstrated that genetic fingerprinting can be an effective tool in helping to manage agarwood genetic resources by potentially supporting the chain-of-custody of agarwood and its products in the market.
    Matched MeSH terms: DNA Fingerprinting
  13. Park YK, Bai GH, Kim SJ
    J Clin Microbiol, 2000 Jan;38(1):191-7.
    PMID: 10618086
    A total of 422 Mycobacterium tuberculosis isolates from eight countries were subjected to IS6110 and IS1081 DNA fingerprinting by means of restriction fragment analysis to characterize M. tuberculosis strains from each country. Chinese, Mongolian, Hong Kong, Filipino, and Korean isolates had comparatively more copies of IS6110 (proportion with eight or more copies; 95% +/- 5%), while Thai, Malaysian, and Vietnamese isolates had fewer copies (proportion with eight or more copies, 60% +/- 4%). We found a number of novel IS1081 types in this study. One IS1081 type was present in 56% of Filipino isolates, had a specific 6.6-kb PvuII fragment in its IS6110 DNA fingerprint, and was termed the "Filipino family." The IS1081 types of Thai isolates had interposing characteristics between the characteristics of northeastern Asian and southeastern Asian IS1081 types. A 1.3-kb single-copy IS6110 fragment was found only in Vietnamese M. tuberculosis isolates. Although M. tuberculosis isolates from each country had comparatively similar characteristics depending on the classification factor, each country's isolates showed characteristic DNA fingerprints and differed slightly from the isolates from the other countries in either the mode number of IS6110 copies or the distribution of IS1081 types.
    Matched MeSH terms: DNA Fingerprinting
  14. Panneerchelvam S, Kumara KT, KokFai L, Saravanakumar M, Sumathy V, Yuvaneswari KC, et al.
    J Forensic Sci, 2004 Sep;49(5):1132-3.
    PMID: 15461127
    Matched MeSH terms: DNA Fingerprinting/methods
  15. Panneerchelvam S, Thevan KK, KokFai L, Saravanakumar M, Sumathy V, Yuvaneswari KC, et al.
    J Forensic Sci, 2004 Jul;49(4):863-4.
    PMID: 15317219
    Matched MeSH terms: DNA Fingerprinting/methods
  16. Panneerchelvam S, Haslindawaty N, Ravichandran M, Norazmi MN, Zainuddin ZF
    J Forensic Sci, 2003 Mar;48(2):451-2.
    PMID: 12665016
    Matched MeSH terms: DNA Fingerprinting/methods
  17. Othman MI, Seah LH, Panneerchelvam S, Nor NM
    J Forensic Sci, 2004 Jan;49(1):190-1.
    PMID: 14979376
    Matched MeSH terms: DNA Fingerprinting/methods
  18. Ong CS, Ngeow YF, Yap SF, Tay ST
    J Med Microbiol, 2010 Nov;59(Pt 11):1311-1316.
    PMID: 20688949 DOI: 10.1099/jmm.0.021139-0
    In this study, PCR-RFLP analysis (PRA) targeting hsp65 and rpoB gene regions was evaluated for the identification of mycobacterial species isolated from Malaysian patients. Overall, the hsp65 PRA identified 92.2 % of 90 isolates compared to 85.6 % by the rpoB PRA. With 47 rapidly growing species, the hsp65 PRA identified fewer (89.4 %) species than the rpoB PRA (95.7 %), but with 23 slow-growing species the reverse was true (91.3 % identification by the hsp65 PRA but only 52.5 % by the rpoB PRA). There were 16 isolates with discordant PRA results, which were resolved by 16S rRNA and hsp65 gene sequence analysis. The findings in this study suggest that the hsp65 PRA is more useful than the rpoB PRA for the identification of Mycobacterium species, particularly with the slow-growing members of the genus. In addition, this study reports 5 and 12 novel restriction patterns for inclusion in the hsp65 and rpoB PRA algorithms, respectively.
    Matched MeSH terms: DNA Fingerprinting/methods
  19. Ochiai E, Minaguchi K, Nambiar P, Kakimoto Y, Satoh F, Nakatome M, et al.
    Leg Med (Tokyo), 2016 Sep;22:58-61.
    PMID: 27591541 DOI: 10.1016/j.legalmed.2016.08.001
    The Y chromosomal haplogroup determined from single nucleotide polymorphism (SNP) combinations is a valuable genetic marker to study ancestral male lineage and ethical distribution. Next-generation sequencing has been developed for widely diverse genetics fields. For this study, we demonstrate 34 Y-SNP typing employing the Ion PGM™ system to perform haplogrouping. DNA libraries were constructed using the HID-Ion AmpliSeq™ Identity Panel. Emulsion PCR was performed, then DNA sequences were analyzed on the Ion 314 and 316 Chip Kit v2. Some difficulties became apparent during the analytic processes. No-call was reported at rs2032599 and M479 in six samples, in which the least coverage was observed at M479. A minor misreading occurred at rs2032631 and M479. A real time PCR experiment using other pairs of oligonucleotide primers showed that these events might result from the flanking sequence. Finally, Y haplogroup was determined completely for 81 unrelated males including Japanese (n=59) and Malay (n=22) subjects. The allelic divergence differed between the two populations. In comparison with the conventional Sanger method, next-generation sequencing provides a comprehensive SNP analysis with convenient procedures, but further system improvement is necessary.
    Matched MeSH terms: DNA Fingerprinting/methods
  20. Nwawuba Stanley U, Mohammed Khadija A, Bukola AT, Omusi Precious I, Ayevbuomwan Davidson E
    Malays J Med Sci, 2020 Jul;27(4):22-35.
    PMID: 32863743 DOI: 10.21315/mjms2020.27.4.3
    Short tandem repeat (STR) typing continues to be the primary workhorse in forensic DNA profiling. Therefore, the present review discusses the prominent role of STR marker in criminal justice system. All over the world, deoxyribonucleic acid (DNA) profiling provides evidence that may be used to convict criminals, as an irrefutable proof of wrongful convictions, invaluable links to the actual perpetrators of crimes, and could also deter some offenders from committing more serious offences. Clearly, DNA profiling tools have also aided forensic scientists to re-evaluate old cases that were considered closed as a result of inadequate evidence. In carrying out this review, a comprehensive electronic literature search using PubMed, ScienceDirect, Google Scholar and Google Search were used, and all works meeting the subject matter were considered, including reviews, retrospective studies, observational studies and original articles. Case reports presented here, further demonstrates the crucial role of forensic DNA profiling in mitigating and providing compelling evidence for the resolution of crimes. For case report 1, there was a 100% match between the DNA recovered from the items found in the crime scene, and the suspect's DNA sample collected via buccal swab following 15 STR loci examination. Case report 2 further highlights the indispensable contribution of DNA database in solving crime. Therefore, it has become very necessary for developing countries like Nigeria to develop a national DNA database and make policies and legislatures that will further expand and enable the practice of forensic genetics, particularly DNA profiling.
    Matched MeSH terms: DNA Fingerprinting
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links